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Abstract—The novel coronavirus pneumonia (COVID-19) has
created great demands for medical resources. Determining these
demands timely and accurately is critically important for the
prevention and control of the pandemic. However, even if the
infection rate has been estimated, the demands of many medical
materials are still difficult to estimate due to their complex rela-
tionships with the infection rate and insufficient historical data.
To alleviate the difficulties, we propose a co-evolutionary transfer
learning (CETL) method for predicting the demands of a set of
medical materials, which is important in COVID-19 prevention
and control. CETL reuses material demand knowledge not only
from other epidemics, such as severe acute respiratory syndrome
(SARS) and bird flu but also from natural and manmade disas-
ters. The knowledge or data of these related tasks can also be
relatively few and imbalanced. In CETL, each prediction task is
implemented by a fuzzy deep contractive autoencoder (CAE), and
all prediction networks are cooperatively evolved, simultaneously
using intrapopulation evolution to learn task-specific knowledge
in each domain and using interpopulation evolution to learn com-
mon knowledge shared across the domains. Experimental results
show that CETL achieves high prediction accuracies compared to
selected state-of-the-art transfer learning and multitask learning
models on datasets during two stages of COVID-19 spreading in
China.

Index Terms—Co-evolutionary learning, deep learning,
demand prediction, epidemic prevention and control, medical
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I. INTRODUCTION

THE ONGOING outbreak of the novel coronavirus pneu-
monia (COVID-19) has created great demands for med-

ical resources. Predicting the demands of emergency medical
resources in a timely and accurate manner is critical to
the prevention and control of the epidemic. Some resource
demands can be estimated based on the infection rate. For
example, for most therapeutic drugs and diagnostic agents,
their demands are considered as proportional to the infection
rate. There have been many studies conducted on mathemat-
ical models and artificial intelligence methods for predicting
the infection rate [1]–[5]. However, for many other epidemic
prevention and control materials, such as face masks and
disinfectants, their demands are not strictly proportional to
the infection rate. In fact, their demands are also affected
by many other factors, including population size and den-
sity, urban and rural environments, traffic flow, public panic,
etc. The relationships between these influence factors and
the demands of materials are complex, uncertain, and not
yet entirely understood; therefore, it is difficult to develop
a deterministic mathematical model for demand prediction.
In recent years, machine-learning approaches, in particular
deep neural networks (DNNs), have been increasingly used to
model complex relationships between input and output vari-
ables [6], [7]. However, most machine-learning models require
large amounts of historical data as training samples. COVID-
19 is an emerging infectious disease, and so we do not have
sufficient historical data of material demands for epidemic
prevention and control.

The motivation of this article comes from our practice
of planning epidemic prevention and control materials for
local governments during the first outbreak of COVID-19 in
Zhejiang Province, China. To overcome the data limitation,
we intend to use transfer learning, an emerging paradigm
of machine learning that reuses knowledge accumulated in a
source domain (task) to better learn a different but related
target domain [8], [9]. Nevertheless, the knowledge from
other epidemics, such as severe acute respiratory syndrome
(SARS), dengue fever, and bird flu, is still limited; there-
fore, we also intend to reuse knowledge from our past
studies on material demand prediction and planning in vari-
ous natural and manmade disasters [10]–[12]. For example,
in a large-scale flood, we should plan sufficient materials,
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such as protective clothing and disinfectants to prevent poten-
tial epidemics, such as cholera and schistosomiasis, and we
believe this knowledge can be shared for material preparation
for epidemic prevention and control. Other potential knowl-
edge includes the relationship between the demands and the
affected area of the event, the relationship between the increase
of demands and the spread of the event, the relationship
among the demands of different materials, etc., which can
be quite complex and difficult to learn by classical regres-
sion models or shallow neural networks. To effectively reuse
knowledge from multiple domains, in this study, we propose
a co-evolutionary transfer learning (CETL) method, which
cooperatively evolves multiple DNNs, each for prediction in
a domain, to simultaneously learn both domain-specific and
domain-general knowledge. The main contributions of the
article are as follows.

1) We propose a new fuzzy deep transfer learning model for
learning a task with few data or knowledge by leveraging
knowledge from a set of related tasks whose data can
also be few and imbalanced;

2) We propose a new co-evolutionary learning algorithm
that evolves multiple subpopulations of solutions, using
intrapopulation evolution to learn task-specific compo-
nents and interpopulation evolution to learn common
components shared among the tasks;

3) We demonstrate the performance advantages of CETL
over state-of-the-art transfer learning methods in demand
prediction in eight cities during two stages of COVID-19
spreading in China.

It should be noted that, in general, there are two categories of
public health strategies for containing COVID-19 [13]: 1) sup-
pression, which aims to drastically reduce the transmission
rate and halt endogenous transmission through strict nonphar-
maceutical interventions and other management measures in
the target population and 2) mitigation, which aims to slow
but do not interrupt transmission completely, achieving herd
immunity by allowing the virus to spread through the popula-
tion while mitigating disease burden. In this study, we focus
on the first strategy that has been taken by countries, such as
China, Singapore, South Korea, and Italy. That is, we aim to
predict material demands during the period from the outbreak
of the epidemic to the achievement of suppression. This task
has much more common features with most disasters.

In the remainder of this article, Section II describes related
work, Section III describes the CETL method in details,
Section IV reports the computational results, and Section V
concludes.

II. RELATED WORK

For an emerging epidemic, such as COVID-19, it is difficult
to obtain sufficient data in a short period of time. Recently,
there has been increasing interest in machine-learning tasks
with limited data. These methods include transfer learning [8],
few-shot learning [14], [15], metalearning [16], and multi-
task learning [17], although there are overlaps between these
categories. In this section, we simply introduce the concept
of each category, and then review its typical applications

for epidemic prevention and control and other public health
tasks.

A. Transfer Learning

Transfer learning aims to reuse knowledge accumulated in
one or more source tasks to better learn a different but related
target task with limited or no labeled training data. Deep learn-
ing models are particularly suited for transfer learning, as they
use multiple hidden layers to capture intricate nonlinear rep-
resentations of data, and the abstract features learned in one
task may be useful for another [18]. As a shortage of reliable
datasets of a running pandemic is a common phenomenon,
transfer learning has been employed to reuse knowledge from
other similar diseases to mitigate COVID-19 like pandemics in
terms of stop spread, diagnosis of the disease, drug and vaccine
discovery, treatment, patient care, and many more [19].

Minaee et al. [20] used transfer learning to identify COVID-
19 from chest radiograms. Because of the limited number
of patients, they reused ResNet/SqueezeNet/DenseNet convo-
lutional neural networks (CNNs) pretrained on public non-
COVID datasets by data augmentation and fine-tuning. Their
test results on 3000 radiograms achieved a sensitivity rate of
around 98% and a specificity rate of around 90%. The work
of [21] added more DNNs, including MobileNet, VGG16,
InceptionV3, and XceptionNet as the base models for the same
task. Basu et al. [22] used a similar transfer learning method
to classify four classes (normal, pneumonia, COVID-19, and
other diseases) from chest X-Ray images, but their method
replaces the last layer of the pretrained CNN with a new fully
connected layer, which achieved an overall accuracy of around
90.13%. Ohata et al. [23] also transferred a CNN pretrained
on ImageNet for COVID-19 detection based on chest X-ray
images, but they combined the CNN with K-nearest neigh-
bor, Bayes, and support vector machine (SVM) to achieve
higher accuracy and F1-Score. To predict severity score for
COVID-19 from chest X-ray images, Cohen et al. [24] started
from a DNN pretrained on seven non-COVID-19 datasets and
added a feature extraction layer to constructed features for
COVID-19 images. The separate feature extractor restricts
the model complexity and reduces the possibility of over-
fitting. Khalifa et al. [25] employed a different approach
that first converts grayscale X-ray images into neutrosophic
images to compensate the limited COVID-19 chest X-Ray
dataset, and then uses these images to retrain existing DNNs to
classify COVID-19 infection versus non-COVID-19 diseases.
Khalifa et al. [26] further employed a generative adversar-
ial network to generate more images to improve classification
accuracy. In [27], Apostolopoulos and Mpesiana evaluated
the performance of state-of-the-art CNN architectures adopt-
ing transfer learning for medical image classification related
to COVID-19. The best accuracy, sensitivity, and specificity
obtained are 96.78%, 98.66%, and 96.46%, respectively.

Using extensive machine-learning experiments on cancer
omics data, Gao and Cui [28] found that current preva-
lent schemes of multiethnic machine learning are prone to
generating significant performance disparities among ethnic
groups. They analyzed the performance disparities caused

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on December 17,2022 at 07:36:59 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SONG et al.: PREDICTING DEMANDS OF COVID-19 PREVENTION AND CONTROL MATERIALS 3

by data inequality and data distribution, and revealed that
transfer learning can improve model performance for data-
disadvantaged ethnic groups so as to reduce health care
disparities. Khamparia et al. [29] proposed an Internet of
Health Things deep transfer learning framework, which
extracts feature from cervical images on pretrained CNN
models to learn for cervical cancer detection and classifi-
cation in Pap smear images. The results showed that pre-
trained ResNet50 can achieve a classification rate of 97.89%.
Song et al. [30] proposed a tridirectional transfer learn-
ing method for predicting the morbidity of gastric cancer
based on an existing model for predicting the morbidity of
another disease in another region by fusing two different
directions of transfer learning, which achieves a significantly
higher prediction accuracy compared with the state of the
arts. However, the method requires that both two intermediate
domains have sufficient data.

B. Few-Shot Learning

Originally, few-shot classification defined a scenario where
only very few samples per class were accessible [31]. With the
advent of deep learning, the scenario was broadened into that
a classifier having large amounts of data for a number of base
classes must be adapted to accommodate new classes bound
by a scarce data regime [15]. In this sense, transfer learning
leveraging knowledge or data from relevant tasks is an intuitive
way to address few-shot tasks. Chen et al. [32] used con-
trastive learning to train an encoder that captures expressive
feature representations on large and publicly available lung
datasets, and adopted the prototypical network for the auto-
mated diagnosis of COVID-19 from chest CT images. The
model has shown superior performance on annotated COVID-
19 CT datasets compared with other competing methods. For
the semantic segmentation of pneumonia-infected area seg-
mentation in CT images, Voulodimos et al. [33] used few-shot
learning based on U-Net architectures, the weights of which
are dynamically tuned as new few samples are being fed into
the network. Wei et al. [34] proposed a c-way k-shot learning
method for leveraging small amount of samples to complete
a brand new classification task. The method was combined
with an attention similarity to perform cough classification in a
COVID-19 detection system. Lwowski and Najafirad [35] used
few shot learning to fine-tune a semisupervised model built
on the unlabeled COVID-19 and previously labeled influenza
dataset that can provide insights into COVID-19 that have
not been investigated. The results showed the efficacy of the
proposed model with an accuracy of 86% in the identification
of Covid-19 related discussion using recently collected tweets.

C. Metalearning

Metalearning, as a concept of “learning to learn” inspired by
human intelligence, is a task-level learning aims to accumulate
experience from learning multiple tasks, while base-learning
focuses on modeling the data distribution of a single task. It
has been proposed as a framework to address the challenging
few-shot learning setting [16]. Shorfuzzaman and Hossain [36]
proposed a metalearning framework that uses a fine-tuned

VGG16 CNN as base model to generate feature embeddings,
which are then used by the Siamese network to learn a
metric space for few-shot classification of COVID-19 cases
with limited training chest X-Ray images. Naren et al. [37]
used a model agnostic metalearning for COVID-19 detection
based on chest X-ray images. They showed that increas-
ing the number of images available to the sublearners can
lead to diminishing returns in performance. To address the
problem of differentiating COVID-19 from other pneumonia
cases, Zheng et al. [38] proposed an unsupervised metalearn-
ing method, which first constructs a deep diagnosis model
based on a relation network to capture and memorize the rela-
tion among different images, and then uses a self-knowledge
distillation mechanism to distills knowledge to the model
to enhance the performance. Singh et al. [39] proposed a
MetaMed approach that relies on metalearning by formulat-
ing the medical image classification for low data regime as
a few-shot learning problem. Test on three public medical
datasets demonstrated that MetaMed exhibits an overall accu-
racy of over 70%. For predicting the population movement
with the spread of COVID-19, Panagopoulos et al. [40] used
a transfer graph neural network, where the nodes correspond
to regions and the edge weights denote human mobility. The
pandemic’s asynchronous outbreaks across countries are cap-
italized using model-agnostic metalearning to transfer knowl-
edge from one country to another. To analyze time influence
in a causal analysis of the COVID-19 pandemic in Chile,
Kristjanpoller et al. [41] used a set of machine-learning tech-
niques, including metalearners and causal forest, and made
final causal analysis with the best base learner. However, such
an elitist strategy fails to utilize knowledge from different
learners simultaneously.

D. Multitask Learning

Multitask learning aims to simultaneously learn a collection
of similar regression or classification tasks by making the tasks
learn from each other, often by using the same network for
all tasks or optimizing all network parameters using the same
samples [42]. Considering image segmentation, classification
and reconstruction as three tasks, Amyar et al. [43] constructed
an architecture composed of a common encoder for feature
representation and two decoders and a multilayer perceptron
for three tasks, respectively, to jointly identify COVID-19
patient and segment COVID-19 lesion from chest CT images.
Goncharov et al. [44] considered identification of COVID-19
cases and severity quantification as two different triage prob-
lems, which are simultaneously learned using a CNN that
applies classification layers to the most spatially detailed fea-
ture map. Hayhoe et al. [45] used multitask learning to tune
a discrete-time epidemic model from various data sources and
design optimal control strategies of human-mobility restric-
tions, where each region of interest was considered as a
separate prediction task. Panda and Levitan [46] employed
multitask learning to identify COVID-19 misinformation on
social media in three languages, including English, Bulgarian,
and Arabic, each of which is considered as a separate task.
Rahimi and Gönen [47] proposed a multitask multiple kernel
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learning algorithm based on the Benders decomposition and
treating the clustering problem as finding a given number of
tree structures in a graph. They applied the algorithm to dis-
criminate early- and late-stage cancers using genomic data,
and the results show that the forest formulation becomes
increasingly favorable with increasing number of tasks.

In the last few years, combining multitask learning with
evolutionary computation to solve multiple optimization prob-
lems together has become an emerging research topic, where
knowledge transfer is a key to share solutions across tasks.
Liang et al. [48] presented an evolutionary multitasking based
on subspace alignment and self-adaptive differential evolu-
tion, which uses a mapping matrix obtained by subspace
learning to transform the search space and reduce negative
knowledge transfer between tasks. The algorithm proposed by
Chen et al. [49] treats the decision space of each task as a
manifold, projects the joint manifold of all decision spaces
to a latent space by solving a generalized eigenvalue decom-
position problem, and represents the task relationships as the
joint mapping matrix utilized for information transfer across
decision spaces during the evolutionary process. As positive
knowledge transfer facilitates superior performance character-
istics, Lin et al. [50] proposed a multiobjective multitasking
optimization algorithm that regards a transfer as positive if
the transferred solution is nondominated in its target task and
selects neighbors of this positive solution for the next gen-
eration. Chen et al. [51] proposed an evolutionary feature
selection method for high-dimensional classification by using
crossover to share information among tasks, where related
tasks about the target concept are established by evaluating
the importance of features.

E. Categories of Our Method

As aforementioned, the above categories have overlaps, and
our method has more or less relations to each of these cat-
egories. As multitask learning, our method simultaneously
learns a set of tasks that could benefit from each other; how-
ever, unlike most multitask learning problems, the amount of
data we have for each task is imbalanced, and we do not
use a big enough network for all tasks. Our method also
addresses the problem of few examples as few-shot learning
and metalearning, but our method does not use a single clas-
sifier as most few-shot learning tasks, nor does it explicitly
differentiate base-learning and the specific target learning as
most metalearning tasks. Because transfer learning leveraging
knowledge or data from relevant tasks is more general and pro-
poses a framework for more specific learning tasks, we define
our method mainly in the category of transfer learning.

One distinct characteristic of our method is to propose
a co-evolutionary algorithm to achieve simultaneous learn-
ing of multiple tasks, which borrows ideas from multi-
task optimization for transfer learning. Besides, as epidemic
spreading and material consumption often involve great impre-
cision and uncertainty, we incorporate fuzzy information
processing to the learning, borrowing ideas from recent
studies that combines deep transfer learning with fuzzy
systems [52]–[54].

III. CO-EVOLUTIONARY TRANSFER LEARNING

The proposed CETL method is for simultaneously learn-
ing m different but related tasks, formally denoted by
{T1, T2, . . . , Tm}, where each task Ti = {Xi;Zi; fi : Xi → Zi}
is characterized by a feature space Xi, a label space Zi, and
a prediction function fi. In this study, we consider nine tasks,
including predicting prevention and control material demands
for five types of epidemics (COVID-19, SARS, dengue fever,
H7N9 Influenza, and H1N1 Influenza) and predicting relief
material demands for four types of disasters/accidents (earth-
quake, typhoon, flood, and dangerous chemical explosion). The
tasks have the same output labels, which are the demands
of ten types of materials (disposable medical masks, dis-
posable medical gloves, goggles, protective clothing, oxygen
bottles, surface disinfectant, disinfection machines, hand san-
itizer, sprayers, and temperature guns; the demand prediction
tasks in disasters/accidents also involve other relief materials,
such as emergency lights and tents, but they are not considered
in COVID-19 material demand prediction in this study). As it
is unnecessary to predict an accurate demand value in most
cases, we describe each output demand as an interval (fuzzy)
number [zL, zU], where zL and zU are the lower and upper
limits, respectively. The input features of the tasks are listed
in Table I. Note that the number of input features is not fixed:
a “repeatable feature” can be input multiple times and pro-
cessed by recurrent neural networks; for example, for dengue
fever, the area and mosquito density of each mosquito-rich
region are input at a time. Also note that the relations between
some features and a specific task can be unknown, but we use
these features as inputs to the prediction task, leaving the deep
learning model to implicitly infer the relations.

The nine tasks share the same output feature set Z and
a subset of common input features Xc. Therefore, their
prediction models can also share a part of latent represen-
tation Y , which can be useful for characterizing both input
distributions P(Xi) and edge distributions P(Z|Xi) parame-
terized through P(Z|Y) [55]. CETL cooperatively learns the
shared representation of all tasks and simultaneously learns
task-specific representations of different tasks, such that the
knowledge of probability distribution learned from source
tasks are automatically utilized in learning the target task.

In the following sections, we first describe the underly-
ing model for prediction tasks and then describe the co-
evolutionary learning algorithm in detail.

A. Model Structure and Pretraining

As the tasks share the same output space and a certain
part of input space, we first construct a common network for
all tasks; next, for each task, we add a task-specific part to
the common network to obtain the corresponding prediction
network. Fig. 1 illustrates the model structure.

The common network consists of a common underlying
DNN and a common regression layer on top of the DNN. We
propose a new fuzzy deep contractive autoencoders (CAEs)
model for the common underlying DNN. A CAE [56] is a
variant of autoencoder (AE) [57], which consists of an encoder
and a decoder. The encoder transforms a D-dimensional input
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TABLE I
INPUT FEATURES OF THE TEN CO-EVOLUTIONARY LEARNING TASKS

Fig. 1. Structure of co-evolutionary learning model for material demand prediction.

vector x to a hidden D′-dimensional representation y through
an affine mapping

f (x) = s(Wx+ b) (1)

where s is an activation function, W is a D′×D weight matrix,
b is a D′-dimensional bias vector, and each input component
is normalized into [0, 1].

The decoder maps the hidden representation y back to a
reconstructed vector x′ in the input space with appropriately
sized parameters WT and b′

f ′(y) = s
(
WTy+ b′

)
. (2)

The objective of AE learning is to minimize the reconstruc-
tion error L over the training set D, while CAE improves the
basic AE by incorporating the penalization of the sensitivity
of the hidden representation y = f (x) to the input x

min J(θ) =
∑

x∈D

(
L

(
x, f ′(f (x))

)+ λ‖Jf (x)‖2F
)

(3)

where θ = {W, b, b′} are model parameters to be learned, λ

is a control parameter, and ‖Jf (x)‖2F is the Frobenius norm of
the Jacobian of the nonlinear mapping for making the model
less sensitive to input noise

‖Jf (x)‖2F =
∑

1≤i≤D

∑

1≤j≤D′

(
∂fj(x)

∂xi

)2

. (4)

The common DNN uses stacked layers of CAE to learn
higher order abstract and correlated representation from input
features, where each layer captures the hidden representation
of the layer below as input. In the early stage of an epi-
demic, the data from real life often contain much imprecise
and uncertain information; to cope with such information, we
express the model parameters as pythagorean-type fuzzy num-
bers (PFNs) [58]. Fuzzy number parameters enable the model
to learn the fuzzy probability distribution over cross-layer
units [59], and PFN based on Pythagorean fuzzy sets [60] that
utilize both membership and nonmembership degrees satisfy-
ing the Pythagorean inequality enables each neuron to learn
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both how a feature contributes and does not contribute to
the production of the output and allows for a larger body of
membership grades than regular and intuitionistic fuzzy num-
bers [60], [61]. In this study, we use interval-valued PFN and
employ exp(·) as the activation function in (1), where the fuzzy
exponential operation is defined as in [62] and [63]. To sup-
port CAE learning based on (3), we measure the reconstruction
error in terms of the distance between x and the centroid of x̃′

L
(
x, x̃′

) =
√√√
√

D∑

d=1

(
xd − c

(
x̃′d

))2 (5)

where the centroid c(A) of a fuzzy number A with membership
function μA is calculated as follows [64], [65]:

c(A) =
∫

xμA(x)dx
∫

μA(x)dx
. (6)

Using this centroid-based defuzzification method, the pre-
training of fuzzy CAE is remained as a crisp optimization
problem instead of a fuzzy optimization one. We employ the
Hessian-free (HF) optimization algorithm [66] to pretrain the
common DNN layer by layer in an unsupervised manner based
on (3), using both labeled and unlabeled samples of all tasks.
As Xc is shared among all tasks, the number of samples for
training the common DNN is sufficient.

After unsupervised pretraining of the common DNN, we
extend it to specific networks for different learning tasks by
adding some neurons to each layer of the common DNN. For
each task-specific DNN, we fix the common part and only
pretrain the task-specific part layer by layer in an unsupervised
manner. As the number of parameters of the task-specific part
is only a small fraction of the entire network, we do not need
a large number of samples for each task.

B. Co-Evolutionary Learning Algorithm

After unsupervised pretraining, we need to train the com-
mon regression layer and fine-tune all DNNs. We propose a co-
evolutionary algorithm to simultaneously perform supervised
training of the regressor and fine-tuning of all DNNs.

For supervised training of the regressor, because the regres-
sor is on top of the fuzzy deep CAE, each actual output
value of the regressor is a fuzzy number. As aforementioned,
each expected output demand ẑ is also characterized by a
fuzzy number [̂zL, ẑU]. For each actual output fuzzy number
z = [zL, zU], let c(z) be the centroid of z, we measure the
deviation of the z from the expected output value ẑ as

dis(z, ẑ) = 1

4

(
cl

∣
∣zL − ẑL

∣
∣

ẑL
+

∣
∣zU − ẑU

∣
∣

ẑU
+ 2|c(z)− c(̂z)|

c(̂z)

)

(7)

where the coefficient cl is 1 if zL ≥ ẑL and is 4 otherwise,
such that the centroid distance plays a more important role
than the lower limit distance and upper limit distance, and an
estimated demand below the lower limit of the actual demand
will be penalized more greatly.

The loss between an actual output fuzzy vector z and an
expected output ẑ is defined as the weighted deviations over

Fig. 2. Illustration of the co-evolutionary process for combined task-general
and task-specific learning.

ten types of materials (Do = 10)

minL(z, ẑ) =
Do∑

d=1

wddis(zd, ẑd) (8)

where wd is the importance weight of the dth type of materials.
The weights are defined by the decision maker and normal-
ized such that the sum of all weights equals to 1. The aim of
supervised training of the regressor is to minimize the total
losses on the labeled training set DL

min JS(θ) =
∑

(x,̂z)∈DL

L
(
f ′(f (x)), ẑ)

)
. (9)

For fine-tuning of each DNN for each task Ti, we aim to
minimize the reconstruction error over the training set Di of
all samples of task Ti

JU(i)(θ) =
∑

x∈Di

L
(
x, f ′(f (x))

)
. (10)

To achieve the above two purposes, the proposed co-
evolutionary algorithm uses m subpopulations, each of which
uses an aggregate objective function as follows to optimize the
pretrained prediction network of task Ti (1 ≤ i ≤ m, m = 9 in
our study):

min J(i)(θ) = JU(i)(θ)+ |Di|
|DL|J

s(θ) (11)

where the ratio |Di|/|DL| balances the two objectives accord-
ing to the sizes of two training sets.

Each solution in a subpopulation has two parts: the first part
consists of task-specific parameters of the DNN for the task
and the second part consists of the parameters of the common
regressor. The evolution of solutions consists of intrapopula-
tion evolution and interpopulation evolution, as illustrated by
Fig. 2.

1) Intrapopulation Evolution: Solutions in a subpopulation
Pi evolve the network for the same task Ti. At each iteration,
each solution θ explores the solution space at each dimension
j as follows:

θ ′j = θj + λθ · rand(−1, 1) (12)
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where rand(−1, 1) denotes a random number uniformly dis-
tributed in (−1, 1), and λθ is for controlling the search range
of θ . The initial value of λθ is set to 0.5; let J(i)

max and J(i)
min be

the maximum and minimum reconstruction losses among all
solutions in the subpopulation, respectively, and λθ is updated
at each iteration as follows:

λθ = λθ · α−
(

J(i)
max−J(i)(θ)+ε

)
/
(

J(i)
max−J(i)

min+ε
)

(13)

where α is a control parameter set to 1.0026, and ε is a very
small number to avoid division-by-zero. In this way, a fitter
solution (with smaller J(i)(θ) value) explores a smaller range
to enhance local search, while a lower fitness solution explores
a larger range to facilitate global search. Such an evolutionary
mechanism is inspired by the motion of shallow water waves
and proposed as the water wave optimization metaheuristic for
solving optimization problems [67].

If a solution θ has not been improved after a predefined
number of iterations, it is replaced by a new solution ran-
domly generated between the old solution and the best known
solution θ∗ to avoid search stagnation

θj = N

(
θ∗j + θj

2
,
|θ∗j − θj|

2

)

(14)

where N(μ, σ ) is a Gaussian random number with mean μ

and standard deviation σ .
Whenever a new best known solution θ∗ is found, the algo-

rithm conducts a local search around θ∗ by generating K
neighbors, each of which is obtained by adding a small offset
to a random dimension j a solitary wave x′ as

θ ′j = θj + β · N(0, 1) (15)

where β is a control parameter that linearly decreases from
0.01 to 0.001 with iteration. The best neighbor, if better than
θ∗, will replace θ∗ in the subpopulation.

2) Interpopulation Evolution: Solutions in different sub-
populations cooperatively evolve the common regressor shared
among the tasks. Therefore, a solution with higher regression
error can probably learn from solutions with lower regression
errors in other solutions. Let JS

max and JS
min be the maximum

and minimum regression errors among all solutions in all m
subpopulation, respectively; at each iteration, we calculate a
probability for each solution θ as follows:

pθ = JS(θ)− JS
min + ε

JS
max − JS

min + ε
(16)

such that a solution with higher regression error have higher
pθ value. At each iteration, each component of the common
regression part of θ has a probability of pθ being modified by
learning from another solution θ ′ as follows:

θj = θj + rand(0, 1) ·
(
θ ′j − θj

)
(17)

where the exemplar solution θ ′ is selected with a probability
inversely proportional to JS(θ ′), such that better solutions tend
to export more features to other solutions [68].

Algorithm 1: Proposed Co-Evolutionary Algorithm for
Mixed Feature and Regression Learning

1 for i = 1 to m do
2 Randomly initialize a subpopulation Pi of solutions for task

Ti;

3 while the stop criterion is not satisfied do
// intra-population evolution

4 for i = 1 to m do
5 Let θ∗ be the best solution in subpopulation Pi;
6 foreach θ in subpopulation Pi do
7 Calculate λθ according to Eq. (13);

8 foreach θ in subpopulation Pi do
9 Produce an offspring θ ′ according to Eq. (12);

10 if J(i)(θ ′) < J(i)(θ) then
11 θ ← θ ′;
12 if f (θ) < f (θ∗) then
13 θ∗ ← θ ;
14 for k = 1 to K do
15 Produce a neighbor θ ′ of θ∗ according to

Eq. (15);
16 if f (θ ′) < f (θ∗) then θ∗ ← θ ′;

17 else
18 if θ remains for ĝ consecutive iterations then
19 Reset θ according to Eq. (14);

// inter-population evolution
20 for i = 1 to m do
21 foreach θ in subpopulation Pi do
22 Calculate pθ according to Eq. (16);

23 for i = 1 to m do
24 foreach θ in subpopulation Pi do
25 foreach dimension j in the second part of θ do
26 if rand(0, 1) < pθ then
27 Select another θ ′ with a probability inversely

proportional to JS(θ ′);
28 Modify θj according to Eq. (17);

3) Algorithm Framework: The co-evolutionary algorithm
alternatively performs an iteration of intrapopulation evolu-
tion and an iteration of interpopulation evolution until the stop
condition is satisfied. Algorithm 1 presents the pseudocode
of the algorithm. Let G be the maximum number of genera-
tions (stopping criterion), NP be the (average) population size,
and O(φ) be the time complexity of evaluating the objective
function of model training; the average time complexity of
the algorithm is O(2GmNPφ) and the worst time complex-
ity is O(G(2m + K)NPφ) (in the case we obtain a new best
solution at each generation, which is preferred because the
algorithm converges rapidly and we can use a small number
G of generations).

After evolution, we select the solution with best JS(θ)

among all subpopulations, and use its second part as the
parameters of the common regressor. Then, for each task Ti,
we temporally combine the first part of each solution in the
ith subpopulation with the selected second part, and select
resulting solution with the best objective function value as the
prediction network for the task.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on December 17,2022 at 07:36:59 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON CYBERNETICS

TABLE II
NUMBERS OF LABELED/UNLABELED SAMPLES IN

DATASETS OF THE EIGHT SOURCE TASKS

IV. EXPERIMENTS

A. Experimental Settings

For source tasks, we collected datasets of material demands
of four types of disasters and four types of other epidemics.
The numeric values are normalized into [0,1] by dividing by
the maximum value of each feature. There are around 10%
feature missing values, for which we use average values of
disasters of similar magnitudes. The labels (relief demands)
are mainly from management departments. For missing labels,
we estimate the demands based on the disaster magnitudes and
number of victims; if the number of victims is still unknown
or very inaccurate, the sample is considered as unlabeled. The
data sources and number of samples of the datasets are sum-
marized in Table II. As we can observe, the total number of
samples was relatively small, the number of labeled samples
was much less than that of unlabeled samples, and the number
of samples of epidemics was much less than that of samples
of disasters.

For the target task of material demand prediction for
COVID-19, we applied our model in two stages.

1) The first stage was the peak of COVID-19 in
China, 2020, where we collected datasets in six cities
(Wuhan, Chengdu, Guangzhou, Chongqing, Hangzhou,
and Wenzhou) during eight weeks from January 27 to
March 22.

2) The second stage was the second wave of COVID-19 in
China, 2021, where we collected datasets in two cities
(Nanjing and Yangzhou) during four weeks from July 21
to August 1.

We obtained input data at the end of each week. However,
determining the actual demands (labels) typically delays a
week. Therefore, we trained the network since the second
week of the first stage. Initially, we have only six unlabeled
samples; on each next week, the number of labeled samples
was increased by six; in the second stage, the number of
labeled samples was increased by two on each week, as shown
in Table III. At the beginning of the first stage, we have few
experiences about the merging COVID-19, and the datasets
have many missing values; with the progress of the epidemic,
the portion of missing values decreases. In the second stage,
the datasets are much completer and more accurate.

To validate the effectiveness of PFN parameters in our
CETL model, we also implemented two variants: the first uses
nonfuzzy parameters (denoted as CETL-NF) and the second

TABLE III
NUMBERS OF LABELED/UNLABELED SAMPLES IN

DATASETS OF THE TARGET TASK

uses regular fuzzy parameters (denoted as CETL-RF). The
number of layers of the underlying DNN is five, and the
numbers of neurons of the four hidden layers are 29, 17, 11,
and 7, respectively, as a result of model structure tuning by
evolutionary optimization [69].

For comparison, we tested a nontransfer-learning deep
AE (DAE) model [70] and five popular transfer learning
and/or multitask methods, including: 1) a shared-hidden-
layer DNN (SHL-DNN) [71]; 2) a joint adaptation network
(JAN) [72]; 3) a multitask Takagi-Sugeno-Kang fuzzy system
(MTFS) [73]; 4) a distributed jointly sparse multitask
(dFSMT) algorithm [42]; and 5) a fuzzy-residual-based trans-
fer learning (ResTL) model [54], which are briefly described
in Table IV. The nontransfer-learning methods only use the
COVID-19 dataset. For each transfer learning method, we
implement two version, the first only uses the datasets of epi-
demics (four source tasks), and the second uses the datasets
of both epidemics and disasters (eight source tasks, denoted
by a suffix “ex”).

According to (7) and (8), we use (1− disd) to evaluate the
prediction accuracy of a material type and use (

∑10
d=1 wddisd)

to evaluate the accuracy of a prediction. Moreover, we consider
a prediction as “successful” if the predicted interval is in the
range of the expected interval, and calculate the corresponding
“success rate” over the test set. The experiments are conducted
on a computer with i7-6500 CPU and 8-GB DDR3 memory.

To test the general applicability of the proposed CETL
method, we also apply it to each of the eight tasks described
in Table II, using other tasks as source tasks. Due to the page
limit, the results are given in the supplementary material.

B. Experimental Results

For the first stage, Tables V–X present the prediction accu-
racies of the models in the six cities, respectively. In each
column, the best accuracy among the 16 methods is shown
in bold, a superscript + denotes that the result of CETLex is
significantly better than that of the corresponding compara-
tive method, a superscript − denotes vice versa, and otherwise
there is no significant difference (with a confidence level of
95%, according to the rank-sum test). Fig. 3 illustrates the
change of the average prediction accuracy of each model with
week.
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TABLE IV
COMPARATIVE DEEP AND/OR TRANSFER LEARNING MODELS

TABLE V
PREDICTION ACCURACIES (IN PERCENTS) OF THE

COMPARATIVE METHODS IN WUHAN

TABLE VI
PREDICTION ACCURACIES (IN PERCENTS) OF THE

COMPARATIVE METHODS IN CHENGDU

As there are no labeled training samples during the first
two weeks, we only test the nontransfer-learning DAE since
the third week, where it always exhibits the lowest accuracy:
its average accuracy is only 18.7% at the third week; although
the accuracy increases with the weekly increment of the num-
ber of samples, it only reaches around 35% at the eighth week,
which is still too low to support public health decisions. By uti-
lizing samples of other epidemics/disasters, all other models

TABLE VII
PREDICTION ACCURACIES (IN PERCENTS) OF THE

COMPARATIVE METHODS IN GUANGZHOU

TABLE VIII
PREDICTION ACCURACIES (IN PERCENTS) OF THE

COMPARATIVE METHODS IN CHONGQING

achieve significantly higher accuracies than the nontransfer-
learning model, indicating that the knowledge about material
demand from the other tasks can be effectively used in learn-
ing material demand knowledge for the emerging COVID-19.
In particular, for each transfer/multitask learning model, it
achieves a significantly higher accuracy on the instance trained
on both epidemic and disaster datasets than that trained on
solely epidemic datasets, which demonstrates that the domains
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TABLE IX
PREDICTION ACCURACIES (IN PERCENTS) OF THE

COMPARATIVE METHODS IN HANGZHOU

TABLE X
PREDICTION ACCURACIES (IN PERCENTS) OF THE

COMPARATIVE METHODS IN WENZHOU

Fig. 3. Average prediction accuracies of the comparative methods on the
test set of the first stage.

of natural and manmade disasters can share knowledge about
material demands with those of epidemics.

The proposed CETLex obtains the highest prediction accu-
racies on all seven weeks in Wuhan, five of seven weeks in

Chengdu, six of seven weeks in Guangzhou, all seven weeks
in Chongqing, six of seven weeks in Hangzhou, and all seven
weeks in Wenzhou. In more details, SHL-DNN obtains the
highest prediction accuracies on weeks 3 and 4 in Chengdu,
CETL-RFex obtains the highest prediction accuracy on week 3
in Guangzhou and week 3 in Hangzhou. Except that on week 3
in Chengdu the result of SHL-DNN is significantly better than
that of CETLex, in other three cases, there are no statistically
significant differences between the CETLex and the best com-
parative method. Among all 42 instances (seven weeks and
six cities), CETLex performs significantly better than SHL-
DNNex on 39 instances, better than JAN on 42 instances,
better than MTFSex on 41 instances, better than dFSMex on
42 instances, and better than ResTLex on 41 instances. At the
second week, the difference of the accuracies of CETLex and
some popular models are not large: SHL-DNNex, MTFSex,
dFSMex, and ResTLex are around 35%, and the accuracy of
CETLex is near to 38%. However, the performance advan-
tages of CETLex increase with the number of weeks; at the
eighth week, the accuracies of those popular transfer/multitask
learning models are around 60%–65%, while the accuracy
of CETLex is near to 81%. The main reasons that CETLex
improves its prediction accuracy more rapidly with time are
as follows.

1) Compared to the learning mechanisms of the other pop-
ular transfer learning models that focus on the utilizing
of knowledge of target tasks to improve the learning
performance of the source tasks, the proposed co-
evolution strategy can make feature learning in different
domains benefit from each other.

2) Compared to the learning mechanisms of the other
popular multitask learning models that require (rela-
tively) balanced data among the tasks, the proposed
strategy can effectively handle imbalanced data (e.g., the
labeled samples of epidemics are quite few) by using co-
evolutionary optimization to explore the solution space
more thoroughly.

Therefore, in the proposed model, with the relatively small
increase of the number of samples of the target task, the
learning performances on other tasks simultaneously increase,
which can feedback to further improve the model performance
on the target COVID-19 task.

Compared to the CETL-NFex version using nonfuzzy
parameters, the CETL-RFex version using regular fuzzy
parameters achieves an accuracy improvement of around 4.7%;
moreover, the CETLex version using PFN parameters achieves
an accuracy improvement of around 4.7% over CETL-RFex.
This demonstrates that, using fuzzy parameters in the co-
evolutionary learning model improves its capability of coping
with imprecise and uncertain information contained in the
datasets, and using PFN parameters with larger membership
grades further improves the model learning abilities.

There are some small performance variances among the
models in different cities. For example, the average accu-
racy of SHL-DNNex is better than that of MTFSex in Wuhan
and Chengdu, but is worse than MTFSex in Chongqing.
However, in general, the performance of the prediction mod-
els does not change greatly in different cities. In other words,
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TABLE XI
PREDICTION SUCCESS RATES (%) THE COMPARATIVE METHODS FOR THE TEN TYPES OF MATERIALS

TABLE XII
PREDICTION ACCURACIES (%) OF THE COMPARATIVE

METHODS IN NANJING

different input values, such as the number of cases and infec-
tion rate, do not seriously affect the model performance.
Among all models, our CETL model using extensive
datasets achieves the highest prediction accuracy in each
city.

Table XI presents the prediction success rates the com-
parative methods for the ten types of materials in the first
stage. The proposed CETLex model obtains the highest suc-
cess rates for nine types of material, expect that for sprayers,
SHL-DNNex obtains the highest success rate of 71.43% that
is a bit higher that 69.05% of CETLex. Among the ten types
of materials, the success rates of CETLex are over 80% for
four types, between 70%–80% for four types, and between
60%–70% for two types. In particular, for disposable medical
masks, disposable medical gloves, goggles, protective cloth-
ing, and surface disinfectant, which are the most important
and widely used types of materials in epidemic prevention
and control, the success rates of CETLex are 83.33%, 85.71%,
80.95%, and 83.33%, respectively.

For the second stage, Tables XII and XIII present the
prediction accuracies of the models in Nanjing and Yangzhou,

TABLE XIII
PREDICTION ACCURACIES (%) OF THE COMPARATIVE

METHODS IN YANGZHOU

Fig. 4. Average prediction accuracies of the comparative methods on the
test set of the second stage.

respectively, and Fig. 4 illustrates the change of the average
prediction accuracy of each model with week. In these two
cities, CETLex always obtains the highest prediction accuracy,
which is significantly better than the other popular learning
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Fig. 5. Relationship between prediction accuracies (acc) and demand sat-
isfaction rates (sat) of medical materials in five cities in Zhejiang Province,
during the peak of COVID-19 in China, 2020.

models selected from the literature. On the basis of the learn-
ing of the first stage, in the second stage, the proposed model
exhibits a high accuracy of around 75% at the first week and
achieves an average accuracy of around 80%.

C. Model Effectiveness

In general, underestimation of the demands would cause
supply shortages and, hence, reduce the capacity of the
healthcare system, while overestimation would cause waste
of resources and economic losses and, when the total supply
is insufficient, oversupply in a region often causes undersup-
ply in other regions. However, it is difficult to quantitatively
measure the effect of prediction accuracy on the effectiveness
of epidemic prevention and control, because the effectiveness
is affected by many other factors, such as the transmission
rate, isolation strength, and existing medical capacity. Here,
we evaluate the effectiveness of the proposed prediction model
in COVID-19 in two parts. First, we evaluate the relationship
between the prediction accuracy and demand satisfaction rate
in hospitals. The data were from seven first-class hospitals,
three in Hangzhou and four in other four cities in Zhejiang
Province, during the first stage. The transmission rates and
public health measures in these cities were similar. Medical
material supply decisions in Hangzhou were based on the
prediction results of our model, while those in the other cities
were mainly based on manual experience or some basic regres-
sion models. Fig. 5 presents the prediction accuracies and
demand satisfaction rates in the five cities, showing that the
demand satisfaction rate is generally proportional to prediction
accuracy; due to the higher prediction accuracy of CETL, the
demand satisfaction rate in Hangzhou was significantly higher
than those in the other four cities since the third week.

Second, we evaluate the relationship between the demand
satisfaction rate and six key medical quality control indices for
COVID-19: 1) hospital admission rate; 2) clinical classification
rate; 3) cure rate; 4) mortality; 5) hospital infection rate; and
6) average length of stay (measured per week). Fig. 6 presents
22 data points collected from four hospitals (two in Wuhan and
two in Hangzhou) during the first stage. The results shows that,
in general, the hospital admission rate, clinical classification
rate, and cure rate increase with the demand satisfaction rate,

Fig. 6. Relationship between demand satisfaction rate and six medical quality
control indices for COVID-19.

while mortality and hospital infection rate decrease with the
demand satisfaction rate, demonstrating that there is a posi-
tive correlation between the demand satisfaction rate and the
effectiveness of COVID-19 treatment in hospitals. Particularly,
when the satisfaction rate exceeds 60%, the cure rate is over
30%, mortality is below 1.5%, and hospital infection rate is 0.

In summary, the evaluation results demonstrate that the
prediction accuracy is positively related to the demand sat-
isfaction rate, and the demand satisfaction rate is positively
related to the effectiveness of COVID-19 treatment in hospi-
tals in terms of the cure rate, mortality, and hospital infection
rate.

V. CONCLUSION AND DISCUSSION

The article presented a CETL method for predicting medi-
cal material demands for COVID-19 prevention and control
by utilizing knowledge from related tasks, including other
epidemics and disasters. CETL uses multiple subpopulations
to simultaneously evolve prediction networks for different
prediction tasks and employs interpopulation evolution to
cooperatively learn common knowledge shared across the
tasks. Experimental results demonstrated that CETL achieves
high prediction accuracies compared to the state of the
arts. As CETL was mainly proposed for learning in a task
with very few data by utilizing data from a set of related
tasks that are also with few or relatively few data, there
are many potential application areas, such as predicting the
demands of police resources for anti-terrorism operations by
co-evolutionary learning of tasks of other violent crimes,
predicting the demands of unmanned aerial vehicle (UAV)
resources in search and rescue by co-evolutionary learning of
other UAV tasks [74], etc.

One shortage of the proposed method is that the co-
evolutionary algorithm uses a large number of iterations and
a relatively large population size and, therefore, the required
computational resources are relatively large. In our experi-
ments, a single run of training a transfer learning model from
the literature on the entire test set typically requires 30 min to
an hour, while that of training CETL requires around 4–6 h
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(although this computational time is affordable in the task and
worth paying for the high prediction accuracies). Currently,
we are integrating reinforcement learning into co-evolutionary
optimization [75] to accelerate the algorithm.
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