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Abstract—Vaccination uptake has become the key factor that
will determine our success in containing the COVID-19 pandemic.
Efficient distribution of vaccines to inoculation spots is crucial
to curtailing the spread of the novel coronavirus pneumonia
(COVID-19) pandemic. Normally, in a big city, a huge number
of vaccines need to be transported from central depot(s) through
a set of satellites to widely-scattered inoculation spots by special-
purpose vehicles every day. Such a large two-echelon vehicle rout-
ing problem is computationally difficult. Moreover, the demands
for vaccines evolve with the epidemic spread over time, and the
actual demands are hard to determine early and exactly, which
not only increases the problem difficulty but also prolongs the
distribution time. Based on our practical experience of COVID-
19 vaccine distribution in China, we present a hybrid machine
learning and evolutionary computation method, which first uses
a fuzzy deep learning model to forecast the demands for vaccines
for each next day, such that we can pre-distribute the forecasted
number of vaccines to the satellites in advance; after obtaining
the actual demands, it uses an evolutionary algorithm (EA) to
route vehicles to distribute vaccines from the satellites/depots
to the inoculation spots on each day. The EA saves historical
problem instances and their high-quality solutions in a knowledge
base, so as to capture inherent relationship between evolving
problem inputs to solutions; when solving a new problem instance
on each day, the EA utilizes historical solutions that perform
well on the similar instances to improve initial solution quality
and hence accelerate convergence. Computational results on
real-world instances of vaccine distribution demonstrate that
the proposed method can produce solutions with significantly
shorter distribution time compared to state-of-the-arts, and hence
contribute to accelerating the achievement of herd immunity.

Index Terms—Evolutionary optimization, novel coronavirus
pneumonia (COVID-19), vaccine distribution, vehicle routing,
hybrid machine learning and evolutionary computation.

I. INTRODUCTION

THe novel coronavirus pneumonia (COVID-19), caused by
severe acute respiratory syndrome corona-virus 2 (SARS-

CoV-2), has infected over 400 million people (by February
2022) and caused significant global social and economic
distress. With slowly increasing population immunity and
evolutionary selection pressure on the virus, new and highly
virulent strains of SARS-CoV-2 are emerging, which could
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quickly exacerbate the crisis [1]. According to the currently
available epidemiological data [2], vaccination uptake has
become the key factor that will determine our success in
containing the COVID-19 pandemic currently enveloping the
world [3]. Therefore, distributing available vaccines to inocula-
tion spots in an efficient and accurate way plays an important
role in achieving herd immunity and breaking the chain of
transmission of the virus.

The motivation of this paper comes from our practice in
COVID-19 vaccine distribution in Hangzhou and other cities
of Zhejiang Province, East China. During the peak period
of vaccination in Hangzhou city, the daily average number
of vaccinations exceeds 100,000. Available (newly produced
and purchased) vaccines are stored in one or several central
depots that are typically located in the center of the city, while
inoculation spots are widely scattered throughout the city,
most of them being far away from the depots. Therefore, the
public health department employs a two-echelon distribution
approach that first delivers the vaccines from the depot(s) to
a set of satellites (regional facilities), each of which is then
responsible for distribution to inoculation spots (customers)
in a region by special-purpose vehicles on each day. Such a
two-echelon distribution approach can be significantly more
efficient than direct distribution from the depot(s) to all cus-
tomers [4]. However, it still has the following difficulties:

• The corresponding two-echelon vehicle routing problem
(2E-VRP) [5] is an NP-hard problem, and a large prob-
lem instance with over ten satellites and hundreds of
customers is impossible or very difficult to solve using
existing exact or heuristic optimization methods;

• As the vaccine demand of each spot changes every day,
the optimal routing solution for the distribution from
depot(s) to satellites and that for the distribution from
each satellite to customers also change; therefore, we
need to solve a new problem instance every day;

• The exact demands are hard to determine in an accurate
and early manner, while vaccinations are expected to
start as early as possible (typically, no later than 9:30
am); hence, the time for computing and implementing
the distribution solution is very limited.

To address the above difficulties, we propose a hybrid
machine learning and evolutionary computation method, which
consists of the following steps to plan the vaccine distribution
on each day:

1) Use a machine learning approach to forecast the demand
of each inoculation spot for the next day;

2) Route vehicles to pre-distribute the forecasted number of
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vaccines to the satellite of each region in advance, so as
to significantly shorten the actual distribution time for the
next day;

3) After obtaining the exact demands, route vehicles to dis-
tribute vaccines from the satellites/depots to inoculation
spots.

For the first-step task, we propose a fuzzy deep neural
network to forecast the demand. The second-step task can be
regarded as a basic and relatively small VRP instance that
can be efficiently solved using existing algorithms. The third-
step task, however, is a large VRP instance, for which we
propose an evolutionary algorithm (EA) that utilizes historical
knowledge of vaccine distribution in early days to improve
the problem-solving performance on new instances, that is,
when initializing a population of solutions to a new problem
instance on each day, the EA selects historical solutions to
similar instances from the knowledge base, and then adapts
these solutions to the new instance to improve initial solution
quality. In this way, initial solutions to different instances are
continually evolved according to their inputs (demands), and
final solutions are obtained by the EA continually evolving
the corresponding initial solutions. We find that this strategy
can effectively accelerate the convergence and improve the
final solution quality. Consequently, our hybrid machine learn-
ing and evolutionary computation method has significantly
improved the efficiency of vaccine distribution in practice.
Fig. 1 illustrates three solution approaches and highlights the
advantages of our approach.

The main contributions of this paper can be summarized as
follows:
• We introduce machine learning to forecast vaccine de-

mands, so as to enable pre-distribution and reduce the
complexity of the large-scale, complex two-echelon vac-
cine distribution problem.

• We utilize historical knowledge of vaccine distribution
obtained by the EA in early days to improve the problem-
solving performance over time.

• We apply the proposed hybrid machine learning and
evolutionary computation method to real-world vaccine
distribution, which significantly improves the effective-
ness of epidemic prevention and control.

The proposed method can also be extended to many similar
problems such as medical mask distribution and scheduling of
other non-pharmaceutical interventions in epidemics [6] and
relief goods distribution in disasters.

The remainder of this paper is organized as follows. Section
II discusses related work on solution methods for medical
supply distribution and, in particular, 2E-VRP. Section III
describes the machine learning approach for forecasting the
demands for vaccines, Section IV formulates the vaccine
distribution problem after forecasting and pre-distribution, and
Section V proposes the EA for solving the problem. Section VI
presents the computational results, and Section VII concludes
with a discussion.

II. RELATED WORK

Distribution of medical supplies to customers timely and
effectively plays a crucial role in response to large-scale

emergency events such as natural disasters and epidemics. In
the literature, a medical supply chain is typically modeled
as a complex network consisting of many different parties
at various stages [7]. Compared to ordinary supply chains,
medical supply chains have specific characteristics includ-
ing rigorous time constraints and special transportation and
storage conditions [8]. Mete and Zabinsky [9] proposed a
stochastic optimization method for the storage and distribu-
tion of medical supplies under various disaster types and
magnitudes. The resulting solutions can suggest loading and
routing of vehicles to transport medical supplies. Lei et al.
[10] studied a problem of personnel scheduling and supplies
provisioning in emergency relief operations; they proposed a
mathematical programming based rolling horizon heuristic for
finding near-optimal solutions. Liu and Zhang [11] proposed a
dynamic medical logistics model that couples medical demand
forecasting and logistics planning to satisfy the demand and
minimize the total cost, characterizing decision making at
various levels of hospitals, distribution centers, pharmaceutical
plants, and the transportation in between them. Büyüktahtakın
et al. [12] presented a mixed-integer programming epidemics-
logistics model for determining the optimal amount, timing,
and location of medical resources to minimize the total number
of infections and fatalities under a limited budget, which was
validated on the case of the 2014-2015 Ebola outbreak in
Africa. The model was modified by Liu et al. [13] by adapting
capacity constraints, and applied to resource planning in the
2009 H1N1 outbreak in China.

In recent years, EAs have been increasingly used to solve
large complex medical supply distribution problems. Arabzad
et al. [14] proposed a multi-objective evolutionary algorithm
(MOEA) combining non-dominated sorting genetic algorithm
(NSGA-II) [15] and parallel neighborhood search to solve a
multi-objective location-inventory problem in a distribution
center network with the presence of different transportation
modes and third-party logistics, simultaneously considering
three conflicting objectives including total costs, earliness and
tardiness, and deterioration rate. Gan and Liu [16] presented
a multi-objective optimization problem considering both the
total unsatisfied time and transportation cost in emergency
logistics scheduling, and proposed a modified NSGA-II by
designing three repair operators to generate improved feasible
solutions to the problem. To solve a multi-period dynamic
emergency resource scheduling problem, Zhou et al. [17]
proposed an MOEA based on decomposition with new evo-
lutionary operators designed according to the intrinsic prop-
erties of the problem. Osaba et al. [18] modeled a drugs
distribution problem with pharmacological waste collection
as a clustered VRP with pickups and deliveries, asymmetric
variable costs, forbidden roads and cost constraints; they
proposed a discrete bat algorithm, where differences among
the bats are calculated based on two different neighbor-
hood structures. To improve the prevention and control of
COVID-19, Ling et al. [19] studied a problem of integrated
civilian-military scheduling of medical supplies, and they pro-
posed an MOEA based on water wave optimization (WWO)
metaheuristic [20] to efficiently solve the problem. In or-
der to design an integrated production-distribution-inventory-
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depot
satellite
inoculation spot

(a) Direct distribution from depots to 
inoculation spots. 
Challenges: 1) high complexity; 
2) demands are known late, and the 
delivery begins late.

(b) Two-echelon distribution. 

Advantages: reduced complexity;
Challenges: demands are known 
late, and the delivery begins late.

(c) Pre-distribution & two-echelon distribution. 

Advantages: reduced complexity & early delivery;
Challenges: demand forecasting

Fig. 1. Comparison of the direct distribution approach, the basic two-echelon distribution approach, and our approach combining demand forecasting,
pre-distribution, and fast distribution. In (c), red arrows denote pre-distribution of forecasted demands, which can begin much earlier than the final distribution.

allocation-location medical supply chain during COVID-19,
Goodarzian [21] proposed three hybrid meta-heuristics, ant
colony optimization, fish swarm algorithm, and firefly algo-
rithm, all hybridized with variable neighborhood search.

In the COVID-19 pandemic, distribution of emergency
medical supplies in a big city normally uses a multi-echelon
approach. As an extension of the basic VRP, 2E-VRP [5] has
a significantly larger solution space than its single-echelon
counterpart, and existing exact algorithms are only capable
to solve instances with up to 3-6 satellites and tens of
customers [22]–[24]. Recently, increasing efforts have been
devoted to metaheuristics and EAs for finding near-optimal
solutions to large 2E-VRP instances within an acceptable
solution time. Hemmelmayr et al. [25] proposed an adaptive
large neighborhood search (ALNS) heuristic for 2E-VRP by
adapting operators to the problem structure. Breunig et al. [26]
proposed a hybrid metaheuristic combining enumerative local
searches with destroy-and-repair heuristics. Grangier et al. [27]
proposed an ALNS algorithm for a 2E-VRP with satellite
synchronization, which is capable of solving instances with up
to 200 customers and 10 satellites. The ALNS metaheuristic
was also used by Enthoven et al. [28] to solve a 2E-VRP with
covering options and by Li et al. [29] for a 2E-VRP with
satellite bi-synchronization.

To solve a 2E-CVRP with stochastic demands, Wang et
al. [30] proposed a genetic algorithm (GA) by designing a
simple encoding and decoding scheme, a modified route copy
crossover operator, and a satellite-selection-based mutation
operator. Results showed that the expected cost obtained by
the GA was not greater than that of the best-known solution
for each test instance. Zhou et al. [31] proposed a hybrid multi-
population GA for a multi-depot 2E-VRP, which exhibited
good performance on a large family of instances. Yan et
al. [32] proposed a graph-based fuzzy EA that integrates
a graph-based fuzzy satellite-to-customer assignment scheme
into an iteratively evolutionary learning process to minimize
the total cost of 2E-VRP. Anderluh et al. [33] studied a multi-
objective 2E-VRP considering not only the cost but also neg-
ative external effects such as emissions and disturbance; they

proposed a metaheuristic that combines a large neighborhood
with an ε-constraint method to approximate the set of Pareto-
optimal solutions to the problem. To solve a real-time 2E-
VRP with pickup and delivery that needs to be solved within
seconds, Martins et al. [34] proposed a constructive-heuristic-
based biased-randomized algorithm using a skewed probability
distribution to modify its greedy behavior. Results showed
that, using massive parallel computing, the method generates
competitive results for instances with up to 150 customers.

There are also many studies on predicting the demands of
vaccines as well as other medical supplies, typically using
statistical regression methods and neural network models [35]–
[37]. However, demand forecasting in public health emergen-
cies like COVID-19 is challenging, mainly because there are
no sufficient historical training data. Therefore, some research
efforts have been devoted to recent machine learning methods,
including unsupervised deep learning, transfer learning, and
multitask learning, which requires few or small number of
training samples. To support drug procurement in hospitals,
Song et al. [38] proposed a deep learning model to predict dis-
ease morbidities from big data, and then estimate the demands
of different drug and determine their optimal combination. In
[39], Song et al. proposed a new tridirectional transfer learning
method for predicting the gastric cancer morbidity based on an
existing model for predicting the morbidity of another disease
in another region by fusing two different directions of transfer
learning, which achieves a significantly higher prediction ac-
curacy compared with the state-of-the-art bidirectional transfer
learning methods. Yong et al. [40] proposed a long short-
term memory (LSTM)-based deep learning model, which can
map the input series to a new vector space effectively, to
forecast demand for vaccines, the data of which are recorded
in the blockchain and used for vaccine production plans. To
forecast the ambulance demand for supporting rational and
dynamic allocation of ambulances and hospital staffing in
Singapore, Lin et al. [41] combined several models including
LSTM, support vector machine (SVM), and convolutional
neural network, to perform prediction based on multi-nature
insights of ambulance demands. Zheng et al. [42] presented
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a co-evolutionary fuzzy deep transfer learning (CoFDTL)
method for forecasting the demand of different relief supplies
by sharing knowledge among different tasks (e.g., types of
disasters such as earthquake, typhoon, and flood), which effec-
tively overcomes the shortage of data in each task. The fuzzy
deep learning model combing unsupervised denoising training
and supervised tuning has demonstrated its performance on
various learning and classification problems [42]–[45].

III. FUZZY MACHINE LEARNING FOR DEMAND
FORECASTING

On each day, the demands for vaccines come from three
main sources: 1) people that have made appointments for
vaccination, 2) people that have been assigned with emergency
tasks (e.g., medical first aid, visiting epidemic areas, and other
high-risk tasks) that need vaccine protection, and 3) people
that directly go to the inoculation spots without appointments.
The deadline for appointments is 21:00 of the previous day;
people without appointments are only admitted before 12:00
of each day.

These demands change on each day. We aim to forecast
the demand of each inoculation spot at around 18:00 of each
previous day, such that the forecasted number of vaccines can
be pre-distributed to the corresponding satellite in the previous
night. Therefore, actually, we need to forecast the number of
people who would make appointments during 18:00–21:00,
who would be assigned with emergency tasks after 18:00,
and who would directly go to the inoculation spot without
appointments. We consider the following affecting features:
• Number of people who have made appointments before

18:00 on the current day;
• Number of people who have been assigned with emer-

gency tasks that need vaccine protection before 18:00 on
the current day;

• Number of people who have made appointments before
18:00 on each of the previous seven days;

• Number of people who have made appointments after
18:00 on each of the previous seven days;

• Number of people who have been assigned with emer-
gency tasks that need vaccine protection before 18:00 on
each of the previous seven days;

• Number of people who have been assigned with emer-
gency tasks that need vaccine protection after 18:00 on
each of the previous seven days;

• Number of people who directly go to the inoculation
spot(s) without appointments on each of the previous
seven days;

• Number of residents;
• Numbers of residents in 0–18, 18–30, 30–50, 50–70, and

over 70 years old;
• Numbers of residents in 0–18, 18–30, 30–50, 50–70, and

over 70 years old that have been vaccinated the first dose;
• Numbers of residents in 0–18, 18–30, 30–50, 50–70, and

over 70 years old that have been vaccinated the second
dose;

• Total infection rates (since the outbreak of the epidemic);
• Current infection rates.
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Fig. 2. Structure of the deep learning model, which consists of stacked layers
of autoencoders and a regression layer on top of the uppermost autoencoder.

For each of the 55 underlying features, we use the values
in the sub-region assigned to the current inoculation spot,
the whole region assigned to the corresponding satellite, and
the whole city. Therefore, an input vector to the forecasting
model has 55 × 3 = 165 values. We use a fuzzy machine
learning forecasting model, which consists of four layers of
autoencoders [46] and a multivariate linear regression (MLR)
layer on the topmost autoencoder to produce the forecasted
demands, including the total number of vaccines demanded
and the number of vaccines for people without appointments,
as shown in Fig. 2. Each autoencoder consists of an encoder
and a decoder. Given a D-dimensional input vector x, the
encoder maps it into a D′-dimensional hidden representation
y through a sigmoid activation function s:

f(x) = s(Wx+ b) (1)

and the decoder maps the hidden representation y back to a
reconstructed vector x′ in the input space:

f ′(y) = s(WTy + b′) (2)

where W is a D′×D weight matrix, and b and b′ are two
bias vectors.

In order to effectively learn the uncertain probability distri-
bution over cross-layer units, we use fuzzy model parameters,
where each parameter β is an interval-valued Pythagorean
fuzzy number (PFN) [47]:

β = 〈[µLβ , µUβ ]; [νLβ , νUβ ]〉

where [µLβ , µ
U
β ] and [νLβ , ν

U
β ] are the membership and non-

membership degrees, respectively, satisfying that [µLβ , µ
U
β ] ∈

[0, 1], [νLβ , ν
U
β ]∈ [0, 1], and (µUβ )

2+(νUβ )
2 ≤ 1. This type of

fuzzy parameters enables the model to learn both how an input
contributes to and how it does not contribute to the production
of the output [48].

The model learning consists of two stages. The first stage is
unsupervised training of autoencoders layer by layer, at each
layer learning the parameters to minimize the reconstruction
error on the training set X :
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minJ (W,b,b′) =
∑
x∈X

(
‖x, f ′(f(x))‖+ λ‖Jf (x)‖2F

)
(3)

where ‖x,x′‖ denotes the distance between each input vector
x and its corresponding reconstructed vector x′, λ is a param-
eter controlling the strength of penalization, and ‖Jf (x)‖2F is
the Frobenius norm of the Jacobian to penalize the sensitivity
of the hidden representation to the input noise [49]:

‖Jf (x)‖2F =
∑

1≤d≤D

∑
1≤d′≤D′

(
∂fd′(x)

∂xd

)2

(4)

The second stages is supervised training of the whole model
to minimize the rooted mean square error (RMSE) on the
labeled training set X ′:

minL =
1

|X ′|
∑
x∈X ′

√
(E(rx)− r̂x)2 + w′(E(r′x)− r̂′x)2

(5)
where r̂x and r̂′x are the labels of total demand and the demand
for people without appointments in sample x, and E(rx) and
E(r′x) are the expected values the corresponding outputs of
the model, respectively.

We employ the Hessian-free (HF) algorithm [50] for un-
supervised training of each layer, and use an evolutionary
algorithm [45] for supervised training of the whole model.

IV. PROBLEM OF TWO-ECHELON VACCINE DISTRIBUTION

After forecasting the demand of each region, we pre-
distribute the forecasted number of vaccines from depot(s)
to the satellite in advance for the next day. In case that the
total forecasted number exceeds the total available stock at
the depots, we can purchase vaccines from the market or
mobilize vaccines from other cities. However, if these vaccines
cannot arrive before the next day, the number of vaccines
to be distributed must be decreased (in the same ratio for
each region, or in different ratios determined by the public
health department). Moreover, the public health department
can take an order-up-to-level policy to replenish more vaccines
(if available) to avoid possible shortages in later days, but
discussion of this policy is out of the scope of this paper.
Anyway, the problem of pre-distribution is a basic VRP of
relatively small size, for which we employ a neighborhood
search algorithm [51] to efficiently solve it. Of course, many
other heuristics and EAs [52]–[54] can be alternatives.

Here, we focus on vaccine distribution after demand fore-
casting learning and pre-distribution. Typically, during 0:00-
2:00, we obtain the actual number of vaccines for people
with appointments and people with emergency tasks that need
vaccine protection for each inoculation spot. We consider the
sum of this number and the forecasted number of vaccines for
people who would directly go to the inoculation spot without
appointments as the actual demand of the inoculation spot. If
the number of vaccines available at each satellite is sufficient
for the total demand of all inoculation spots in the region,
the problem is to distribute vaccines from each satellite to
the inoculation spots in the region, which is also a relatively

TABLE I
MATHEMATICAL VARIABLES USED IN THE VACCINE DISTRIBUTION

PROBLEM.

Variable Description
O Set of inoculation spots
ro Number of vaccines demanded by inoculation spot o (o ∈ O)
D Set of depots
S Set of satellites
ad Number of vaccines available at depot d (d ∈ D)
as Number of vaccines available at satellite s (s ∈ S)
Vd Set of vehicles stored available at depot d (d ∈ D)
Vs Set of vehicles stored available at satellite s (s ∈ S)
Cv Capacity of vehicle v (v ∈

⋂
d∈D Vd)

t(p1, p2) Travel time between pair (p1, p2) (∀p1, p2 ∈ O∪S∪D)
T (o) Time at which the inoculation spot o receives vaccines (o ∈ O)
T̂ Deadline for all inoculation spots to start vaccination
Os Set of inoculation spots assigned to satellite s (s ∈ S)
m Number of all vehicles
xi Route of vehicle vi (1≤ i≤m)
si Depot or satellite from which vehicle vi departs (1≤ i≤m)
ni Length of the route xi (1≤ i≤m)
xi,j j-th inoculation spot in the route xi

small VRP instance that can be efficiently solved. However,
in most cases, there are errors between the forecasted demand
and the actual demand, resulting in that some regions are
with vaccine shortages while other regions are with vaccine
surpluses. In such cases, the problem is to distribute vaccines
from satellites/depots to all inoculation spots, i.e., all satellites
are regarded as depots. Consequently, the problem is a multi-
depot VRP that can be formulated as follows (Table I lists the
main symbols used in the problem formulation).

Let O be the set of inoculation spots, ro be the actual
vaccine demand of each spot o ∈ O, D be the set of depots,
S be the set of satellites, ad and as be the number of vaccines
available at each depot d ∈ D and each satellite s ∈ S, Vd and
Vs be the vehicle set available at each depot d ∈ D and each
satellite s ∈ S, respectively. The travel time between each pair
of points p1 and p2 is assumed to be known and is denoted
as t(p1, p2) (∀p1, p2 ∈ O ∪D ∪ S). Let V be the set of all m
vehicles, and Cv be the capacity of each vehicle v ∈ V (as we
consider heterogeneous vehicles). The problem is to determine
the route xi for each vehicle vi ∈ V (i.e., xi is a sequence
of inoculation spots assigned to vi, 1 ≤ i ≤ m), such that
the vaccine-number-weighted accumulative distribution time
is minimized:

min f(X) =

∑
o∈O roT (o)∑
o∈O ro

(6)

where X = {x1,x2, . . . ,xm} is the solution vector, T (o)
is the time at which spot o receives vaccines, ro is used as
the importance weight of spot o such that spots with larger
demands are expected to receive vaccines (and hence start
vaccination) earlier, and the constant denominator

∑
o∈O ro

is used to make the objective function represent the average
weighted distribution time over all spots. Let si denote the
depot or satellite from which vehicle vi departs and ni denote
the length of route xi; T (o) in each route xi can be iteratively
calculated as follows (1≤ i≤m):

T (xi,1) = t(si, xi,1) (7)
T (xi,j+1) = T (xi,j) + t(xi,j , xi,j+1), 1≤j<ni (8)
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Here, we regard loading/unloading times as constants and
do not explicitly include them in the formulation, because
they are typically trivial compared to the travel time along
the (relatively) long routes. We also omit the effects of other
factors such as traffic conditions and storage limits, because
vaccine distribution is typically regarded as a critical public
health management task and given a high priority in resource
assignment and traffic control. These detailed calculations
can be easily added without affecting the framework of our
algorithm.

For notational simplicity, when needed, we also use xi to
denote the set of inoculation spots in the route. Each solution
X must satisfy the following basic constraints:
• Each inoculation spot is visited by at most one route:

xi ∩ xi′ = ∅, ∀i, i′ ∈ {1, 2, . . . ,m} ∧ (i 6= i′) (9)

• All inoculation spots must be assigned:
m⋃
i=1

xi = O (10)

• Each route cannot violate the vehicle capacity:
ni∑
j=1

rxi,j
≤ Cvi , ∀1≤ i≤m (11)

• each inoculation spot must receive vaccines no later than
the deadline T̂ (set to 9:30 am in our study):

T (xi,ni) ≤ T̂ , ∀1≤ i≤m (12)

As vaccine distribution in a big city typically involves a
dozen of satellites/depots and hundreds of inoculation spots,
the problem has a significantly large solution space.

V. EVOLUTIONARY OPTIMIZATION FOR VACCINE
DISTRIBUTION

In this section, we describe the EA proposed for the vaccine
distribution problem. As the vaccination program often lasts
for a period, we need to solve a new problem instance every
day. Although different instances have different demands, the
demands do not change dramatically over time; moreover, the
instances share common features such as the distribution of
depots, satellites, and inoculation spots, available vehicles, and
the underlying transportation network. Therefore, we have an
opportunity to capture inherent relationship between evolving
problem inputs (demands) to solutions, such that historical
knowledge of vaccine distribution in early days can be utilized
to improve the algorithm performance on new instances, which
is the main difference of our EA from existing EAs for VRP.
We also use machine learning to infer a threshold of the
distance between an inoculation spot and its satellite to reduce
the search space and improve search performance.

A. Knowledge Base of Historical Instances and Solutions

We construct a knowledge base, which saves two types of
knowledge items. Each first-type item consists of an instance
of the vaccine distribution problem and a set of known high-
quality solutions to the instance. Given two instances I and

I ′, we evaluate the distance between them based on the
differences among their inputs as

D(I, I ′) =
∑

s∈S∪D
(as−a′s)2 + wr

∑
s∈S

(rs−r′s)2 (13)

where as (available number of vaccines) and rs=
(∑

o∈Os
ro
)

(demanded number of vaccines) are the inputs to the instance
I , a′s and r′s are the inputs to the instance I ′, and wr is a
coefficient equal to or larger than 1 (set to 2 in our study).

Each second-type item consists of a subproblem instance of
vaccine distribution from a satellite/depot and a set of known
high-quality sub-solutions to the sub-instance. Given two sub-
instances Is and I ′s, we evaluate the distance between them
as

D(Is, I ′s) =
∑

o∈Os∩O′s

(ro−r′o)2 +
∑

o∈Os\O′s

r2o +
∑

o∈O′s\Os

r′2o

(14)
where Os and O′s denote the subsets of inoculation spots
assigned to s in Is and I ′s, and ro and r′o are the demands
of inoculation spot o in the two sub-instances, respectively.

For each instance/sub-instance, we save at most NB
solutions/sub-solutions, where NB is a control parameter (set
to 10 in our study). A new solution will replace an existing
solution in the knowledge base only if it is a new best-
known solution for the instance/sub-instance, or it satisfies
two conditions: 1) its objective function value is not larger
than twice the value of the best-known one; 2) by replacing
the non-best solution that has the minimum average distance to
all other solutions in the knowledge base, it will increase this
minimum average distance. The distance between two routes
xi and x′i of a vehicle vi, denoted by d(xi,x′i), is calculated
as follows:

1) Initialize the distance to zero;
2) For each spot in xi but not in x′i, increase the distance

by 1;
3) For each spot in x′i but not in xi, increase the distance

by 1;
4) Obtain the longest common subsequence of the two

routes;
5) For each spot in xi and x′i but not in the longest common

subsequence, calculate the difference between its index
and the index of the longest common subsequence in each
route; if the difference is not the same in the two routes,
increase the distance by 0.5.

For two sub-solutions Xs and X ′s to a sub-instance of
vaccine distribution from a satellite/depot s, their distance
d(Xs, X

′
s) is calculated as follows:

1) Sort the routes in Xs in non-increasing order of the
number of spots;

2) For each route xi in Xs, match it with a route x′i whose
distance to xi is the smallest among all unmatched routes
in X ′s;

3) Calculated d(Xs, X
′
s) as the square root of the distances

of all pairs of matched routes.

For two solutions X and X ′ to an instance of the problem,
their distance is calculated as the mean square root of the
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x1 x'1{5,2,3,7} {1,2,3}

x2 x'2{10,6,4} {8,6,4,10}

x3 x'3{1,9,8} {5,9,7}

Fig. 3. An example of two solutions to an instance using three vehicles
for distribution from a depot to ten spots. (1) For vehicle v1, spots 5 and 7
are in x1 but not in x′1, and spot 1 is in x′1 but not in x1, and so we have
d(x1,x′1) = 3. (2) For v2, spot 8 is in x′2 but not in x2; spot 10 is in both
x′2 and x2, but it is not in the longest common subsequence {6,4}, and its
index differences from the subsequence are not the same in the two routes;
hence, we have d(x2,x′2) = 1.5. (3) For v3, spots 1 and 8 are only in x3 and
spots 5 and 7 are only in x′3, and so we have d(x3,x′3) = 4. The distance
between the two solutions is d(X,X′) =

√
32 + 52 + 1.52 = 5.22.

distances of all pairs of sub-solutions in the two solutions:

d(X,X ′) =

√ ∑
s∈S∪D

d2(Xs, X ′s) (15)

Fig. 3 presents an example for calculating the solution
distance.

Based on the first-type knowledge, we construct another
machine learning model. The input features to the model
consists of ad for all d ∈ D and as and rs for all s ∈ S in
a problem instance. The model output is the maximum travel
time t† between an inoculation spot and the satellite/depot
to which it is assigned in the best-known solution x∗ to the
instance:

t† = max
s∈S∪D

{
max
vi∈Vs

{max
o∈x∗i

t(o, s)}
}

(16)

We use MLR to model this relation. In this study, we
train each model instance using samples in the same city for
prediction. We can also extend the model for prediction in
different cities but, if so, geographical distribution information
should also be considered as model inputs. For each new
instance, we use the model to predict the t† value; if the value
is smaller than the smallest value in the knowledge base, it is
set to the latter. We then use 2t† as a threshold for assigning
any inoculation spot to a satellite for the instance, which can
significantly reduce the search space of the algorithm.

B. Solution Initialization

To solve a new instance I of the problem, the EA initializes
a population of NP solutions, which are divided into two
classes. Each first-class solution is generated based on solu-
tions to similar instances and sub-instances in the knowledge
base. First, we randomly select a “base” solution X0 to a
similar instance from the knowledge base. The similar instance
can be the one that has the minimum distance to I , denoted
by D∗I , or another instance whose distance to I is not larger
than 2D∗I . We take the inoculation spot assignment in X0 for
X . Next, for each sub-instance of vaccine distribution from
a satellite/depot s ∈ S ∪ D, we randomly select a “base”
sub-solution X0

s to a similar sub-instance from the knowledge
base, and then adapt the routes in X0

s to the given sub-instance
using the following procedure:

1) Remove any spot in O′s\Os from the routes;

2) Sort all unassigned spots in Os\O′s in non-increasing
order of ro;

3) For each spot in Os\O′s, insert it into the route with
the earliest completion time at a position, which has the
minimum objective function value among all possible
positions.

We generate at most NP /2 first-class solutions for the
population, but remove any duplicated ones.

Each second-class solution is randomly initialized using the
following procedure (where the threshold 2t† is applied):

1) For each satellite s with sufficient vaccines for its region,
randomly assign each inoculation spot in the region
to a vehicle (with sufficient remaining capacity) at the
satellite;

2) For each remaining inoculation spot o, randomly assign
it to a vehicle (with sufficient remaining capacity) at a
satellite/depot s satisfying that t(o, s) ≤ 2t†;

3) For each vehicle, employ the NEH heuristic [55] to
initialize its route;

4) For each satellite/depot, continually move an inoculation
spot from the route with the maximum completion time to
the route with the minimum completion time until doing
so cannot improve the solution fitness.

C. Solution Evolution

After initializing the population, the EA iteratively evolves
the solutions. At each generation, each solution X in the
population produces a child solution X ′ by performing a series
of random local search (RLS) operators including:
• Randomly swapping two spots in a route;
• Randomly moving a spot o from a route xi to another xi′ ,

under the condition that the capacity of vi′ is not violated,
and the distance between o and the satellite/depot of xi′
is not larger than 2t†;

• Randomly swapping two spots o and o′ between two
routes xi and xi′ , under the condition that the capacity
of either vehicle is not violated, and the distance between
o and the satellite/depot of xi′ and that between o′ and
the satellite/depot of xi are both not larger than 2t†.

The number of RLS operations performed on X is a random
number between 0 and λ(X), the variability of X calculated
as follows:

λ(X) =
m

2
·
(

4

m

)(f(X)−fmin+ε)/(fmax−fmin+ε)

(17)

where fmin and fmax are the minimum and maximum objec-
tive function values among the population, respectively, and ε
is a small positive number to avoid division by zero. The idea
of assigning each solution with a variation is borrowed from
evolutionary programming [56], [57], and making the variation
inversely proportional to the solution fitness is borrowed
from the WWO metaheuristic [20], [58], such that good/bad
solutions search small/large areas to balance exploration and
exploitation.

If the child X ′ is better than X , it replaces X in the
population. To avoid search stagnation, if a solution X has
not produced a better child during a number ĝ of consecutive
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generations (where ĝ is a control parameter), it will be replaced
by a new solution randomly generated using the approach
described in Section V-B, where the best-known solution
obtained by the EA is also considered as an exemplar as
knowledge-base solutions.

We also enhance the EA with an extensive neighborhood
search (ENS), which is performed on any new solution X ′

that is better than the current best-known solution X∗, or
is better than the parent X and its distance to X∗ is larger
than the average distance to X∗ of all other solutions in the
population. The ENS has the following neighborhood search
operators (using ideas borrowed from [59]):
• Single-route improvement, which first moves up a point

while moving down another point in the route; if no
improvement is obtained, swaps two points in the route.

• Multi-route improvement, which first moves a point from
one route to another; if no improvement is obtained, swap
two points between a pair of routes; if no improvement is
obtained, exchange three points between a triple of routes;
any operation cannot violate the distance threshold 2t†.

Algorithm 1 presents the pseudo-code of the EA.

Algorithm 1: The EA for the vaccine distribution
problem after demand forecasting and pre-distribution.

1 Initialize a population of solutions according to Section V-B;
2 Let X∗ be the best among the solutions;
3 while the stop condition is not met do
4 Compute the average distance d from all other solutions

to X∗;
5 foreach X in the population do
6 Compute λ(X) according to Eq. (17);
7 Let λ be a random number between 0 and λ(X);
8 Produce a child X ′ by performing λ-step local

search operations on X;
9 if f(X ′) < f(X) then

10 Replace X with X ′;
11 if f(X) < f(X∗) or d(X,X∗) > d then
12 perform ENS on X;
13 if f(X) < f(X∗) then
14 X∗ ← X;

15 else if X has not been improved during consecutive
ĝ generations then

16 Replace X with a new solution initialized
according to Section V-B;

17 return X∗.

VI. COMPUTATIONAL RESULTS

We have applied the proposed hybrid machine learning and
evolutionary computation method to vaccine distribution in
Hangzhou City, Zhejiang Province, China, since April 7, 2021.
There were two depots and 10 satellites, and the number of
inoculation spots slightly changed between 200–240. Before
April 7, the public health department used a two-echelon
distribution approach (without demand forecasting and pre-
distribution) which employed a GA adapted from [30]. For the
application on April 7, we used the data from March 24 to

TABLE II
CONTROL PARAMETERS OF THE PROPOSED EA.

Parameter Description Value
NP population size 45

NB
number of solutions of an instance
in the knowledge base 10

ĝ
maximum number of non-
improvement generations

linearly decreases from 12
to 3 with generation

April 6 as the samples to train the fuzzy deep learning model;
since then, we re-trained the model with the new data on
each day. For the EA for optimizing vaccine distribution after
demand forecasting and pre-distribution, we first tuned the
control parameters of the algorithm on the simulated instances
of the seven days before April 7, resulting in a setting shown
in Table II; after each seven days, we re-tuned the parameters
with new instances, but the values did not change much.

Here, we present the application results from April 7 to
April 30. To validate the performance of the proposed EA
with the knowledge base (denoted by KB-EA), we not only
simulate the use of the previous GA-based two-echelon (GA-
2E) distribution method on each day’s vaccine distribution
task (without pre-distribution), but also employ the following
heuristics and metaheuristics to solve each day’s instance of
the vaccine distribution problem after pre-distribution:

• A reactive greedy randomized adaptive search (RGRAS)
method [60];

• A hybrid ant colony-variable neighborhood search (ACO-
VNS) algorithm [61];

• A discrete firefly algorithm with compound neighbor-
hoods (DFA-CN) [62];

• A hybrid GA with VNS (GA-VNS) [63];
• A hybrid VNS with greedy randomized adaptive memory

programming search (VNS-GRAMPS) algorithm [64];
• A variant of our EA without using the knowledge base.

Each comparative algorithm is run for 30 times on each
instance. The computational environment is a workstation
with an i7-6500 2.5GH CPU, 8GB DDR4 RAM, and an
NVIDIA Quadro M500M card. Fig. 4 presents the objective
function values (i.e., average weighted distribution times)
obtained by the comparative algorithms on the 24 instances.
The average weighted distribution time of the previous two-
echelon distribution method ranges between 120–170 minutes
and is around 145 minutes in average. In comparison, by
forecasting and pre-distributing the demands, all other seven
algorithms significantly decrease the average distribution time.
Among these seven algorithms, the proposed KB-EA achieves
the minimum average distribution time of 51.1 minutes. The
key difference between EA and KB-EA is that the former
does not utilize the knowledge base for solution initialization;
the average distribution time of EA is 71.1 minutes, which is
also significantly longer than that of KB-EA, demonstrating
that utilizing high-quality historical solutions in solution ini-
tialization effectively accelerates the evolutionary process and
therefore improves the final results. Another evidence is that,
as we can observe from Fig. 4, although the previous GA-
2E method and EA have significantly different performances,
they have similar changing forms, that is, their performances

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on December 17,2022 at 07:42:34 UTC from IEEE Xplore.  Restrictions apply. 



1089-778X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2022.3164260, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 9

change with the instances in a similar way. In comparison,
because KB-EA utilizes historical knowledge in initializing
solutions for new instances, its performance does not only
affected by the instance on hand, but also improves over
time: the average distribution time of KB-EA on Apr 7 is
the highest among the 24 days and is not significantly from
that of the other algorithms, but the time generally decreases
from April 7 to April 30, and finally achieves a significant
performance advantages over the others. Fig. 5 presents the
vehicles routes for vaccine distribution in our solution in April
16: among 23 vehicle routes, 11 routes (in green) cover only
inoculation spots inside the corresponding regions, ten (in
blue) cover inoculation spots cross two or more regions, and
two are from central depots to inoculation spots. The results
indicate that, after pre-distribution, it is necessary and efficient
to allow cross-region vaccine distribution. For comparison,
Fig. 6 presents the vehicles routes in the solution produced
by the EA without pre-distribution, where inoculation spots
on yellow lines would receive vaccines after the deadline T̂ .
This is because, in the standard 2E-VRP approach, a satellite
could begin the delivery only after it receives vaccines from
the depot(s), and hence some customers have to wait a long
time. In our approach, pre-distribution of vaccines to satellites
allows the satellites to begin the delivery much earlier, and
there is no customer receiving vaccines after the deadline in
our solution.

In general, the performances of the other six algorithms
other than KB-EA change over instances in a manner similar
to that of GA-2E, as all of them do not utilize historical
knowledge. Among these six algorithms, EA does not always
show the best performance. The average distribution time of
VNS-GRAMPS is only 65.3 minutes, and that of DFA-CN
is around 70.8 minutes, both being shorter than that of EA.
The average distribution times of the other three algorithms
are longer than EA, where those of RGRAS and GA-VNS
are around 78.5 and 78.4 minutes, respectively. These two
algorithms perform similarly with other algorithms on some
relatively simple instances (such as the instances of Apr 26,
27, 29 and 30), but perform much worse than others on some
more difficult instances (such as the instances of Apr 16–21),
which reveals that they are suitable for solving some simple
instances, but their performances dramatically deteriorate with
the increase of the instance difficulty.

According to Wilcoxon rank-sum tests, on the instance of
Apr 7, the result of KB-EA has no statistical difference with
those of VNS-GRAMPS and DFA-CN, but is significantly
better than those of RGRAS, ACO-VNS, and GA-VNS; on
each of the other 23 instances, the result of KB-EA is
significantly better than those of all other algorithms. The
results demonstrate that our knowledge-based EA exhibits con-
siderable performance advantages over not only the previous
method without pre-distribution, but also popular EAs for the
extended VRP after pre-distribution.

Next, to validate the performance of fuzzy deep autoencoder
(FDAE) forecasting model in combining with KB-EA, we also
test the following five forecasting models by combining each
of them with the KB-EA:
• A basic three-layer feed-forward artificial neural network

(ANN) model;
• An auto-regressive integrated moving average (ARIMA)

model [65];
• A least square support vector machine (LSSVM) model

[66], [67];
• A deep multi-scale convolutional LSTM (CLSTM) Net-

work model [68];
• A basic deep autoencoder (DAE) model [46] using the

same structure as our FDAE but using standard crisp
parameters instead of fuzzy ones.

The structures and parameters of these models are all tuned
by the evolutionary optimization method [45]. In Fig. 7, the
graph at the top presents the forecasting accuracies of different
machine learning models, and the graph at the bottom presents
the average weighted distribution time (in minutes) obtained
by KB-EA combined with these machine learning models.
In general, the forecasting accuracies of the models increase
over time with the increasing amount of historical data,
which consequently improves the distribution performance of
the hybrid machine learning and evolutionary computation
methods. The forecasting accuracy of the traditional ANN
model is the lowest and most unstable, because the number
of influence features for demand forecasting is large, and the
shallow network structure is inefficient in learning in the high-
dimensional feature space. The forecasting accuracies of the
other five models and the distribution performances of their
combinations with KB-EA are relatively stable. Initially (after
training on the data from March 24 to April 6), LSSVM
exhibits the highest forecasting accuracy of 82.11%, and
FDAE exhibits the second highest accuracy of 79.27%. Since
Apr 8, except on Apr 11 the accuracy of FDAE is slightly
lower than LSSVM, on all other days the accuracy of FDAE
is always higher than LSSVM and the other four models. In
general, the forecasting performance advantages of FDAE over
the other models also increase over time. In particular, the
advantage of FDAE over DAE demonstrates that the use of
fuzzy parameters effectively improve the model performance,
as the input features often contain fuzzy and uncertain infor-
mation. In terms of the overall or average forecasting accuracy,
FDAE exhibits the highest performance that is significantly
better than the other models, the performance of LSSVM ranks
second, and those of ARIMA and CLSTM are relatively low.

The forecasting performance advantages of FDAE also
result in the distribution performance advantages of KB-EA
combined with FDAE over KB-EA combined with other
machine learning models. As we can observe from the bottom
graph in Fig. 7, similar to their forecasting performances, the
distribution performance obtained by KB-EA with ANN is
the worst and most unstable; the distribution performances
obtained by KB-EA with other five models generally increase
with time, where those obtained by KB-EA with ARIMA and
KB-EA with CLSTM are relatively low, and that obtained by
KB-EA with FDAE is the best.

To validate the relationship between forecasting accuracy
and distribution time, we also use the performance of KB-
EA with FDAE as the benchmark to calculate the ratio of the
average weighted distribution time difference to the forecasting
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Fig. 4. Objective function values (average weighted distribution times in minutes) obtained by the GA-2E method previously used by the organization, the
proposed KB-EA, and the other six comparative algorithms on the instances of vaccine distribution in Hangzhou on 24 days from Apr 7 – Apr 30. The results
show that the solutions of KB-EA have significantly shorter distribution times (shown in the green line) than other algorithms in all cases.

accuracy difference of each other model on each instance:

RAT =
f − fb

(accb − acc)× 100%
(18)

where accb is the forecasting accuracy of the benchmark model
(FDAE), fb is the objective function value (average weighted
distribution time) obtained by KB-EA with FDAE, and acc
and f are the forecasting accuracy and average weighted
distribution time of the corresponding comparative model,
respectively. Fig. 8 presents the median, maximum, minimum,
first quartile (25%) and third quartile (75%) of RAT values
of each other model. The results show that the median RAT
values of the models are 0.73–1.10, and most RAT values are
between 0.64–1.2 (from the first quartile to third quartile), that
is, in average, if the forecasting accuracy is decreased by one
percent, the weighted distribution time will be increased by
around one minute, and the deviations are generally small. The
results clearly demonstrate that the distribution performance is
generally proportional to the forecasting performance, which
validates the fundamental principle of our hybrid machine
learning and evolutionary computation method.

Finally, we test the sensitivity of the EA to the threshold
of the distance between an inoculation spot and its satellite.
We compare the objective function values obtained by the EA
with threshold values of t†, 1.25t†, 1.5t†, 1.75t†, 2t†, 2.25t†,
2.5t†, and without threshold on the test instances. As we can
observe from the results shown in Fig. 9, the threshold value
of 2t† results in the best performance. When the threshold
value is too large, the search space increases rapidly, and the
probability that the EA finds optimal or near-optimal solutions
decreases dramatically; on the contrary, if the threshold is
too tight, many high-quality solutions are excluded during the
search process, and thus the algorithm performance reduces.
Note that we do not intend to find a very accurate value of the
threshold, as the best threshold value changes with instances,
and our results show that using 2t† is a simple way that

performs well on most instances.

VII. CONCLUSION

In this paper, we present a hybrid machine learning and
evolutionary computation method for vaccine distribution in a
big city. The method first uses fuzzy deep learning to forecast
the demands for vaccines for each next day, so as to pre-
distribute the forecasted number of vaccines to satellites in
advance, and then uses EA to route vehicles to distribute
vaccines from the satellites/depots to inoculation spots on
each day. The EA utilizes knowledge of historical vaccine
distribution to improve initial solution quality to each new
instance, and employs a distance threshold to reduce the
search space. Computational results on real-world instances
in Hangzhou, China, demonstrate the effectiveness and ef-
ficiency of the proposed method compared to the previous
two-echelon distribution method and some state-of-the-art
EAs for VRP. The source code is available at our website
http://compintell.cn/en/dataAndCode.html. We are currently
extending the distribution problem by allowing using different
types of vehicles (including unmanned vehicles) while taking
the efficiency of medical staff into consideration [69].

The proposed hybrid machine learning and evolutionary
computation method can be useful for many other similar
resource distribution problems, such as medical mask distri-
bution in epidemics, relief goods distribution in disasters, and
police deployment in riots, where the demands for resources
are often uncertain and change over time. For such prob-
lems, demand forecasting and pre-distribution can significantly
reduce the total distribution time, and utilizing historical
distribution knowledge can effectively improve the problem-
solving performance over time. One limitation of the current
method is that the instance/solution measurements depicted
in Section V-A are problem-specific, and our ongoing work
will generalize the measurements to cover a wide range of
problems.
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depot
satellite
inoculation spot

Fig. 5. Distribution solution produced by our method for the instance of April 16. A green line denotes a vehicle route within a predefined region, a blue
line denotes a vehicle route which covers inoculation spots cross two or more regions, and a red line denotes a vehicle route directly from the central depot
to inoculation spots. The results show that cross-region delivery plays an important role in the solution.

depot
satellite
inoculation spot

Fig. 6. Distribution solution produced by the 2E-VRP approach without pre-distribution for the instance of April 16. A red line denotes a depot-to-satellite
route, a green line denotes a satellite-to-customer route, while a yellow line following a green line indicates that the corresponding customer(s) would receive
vaccines after the deadline.
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Fig. 7. Comparison of different machine learning models in combining with KB-EA on the 24 instances. The top graph shows the forecasting accuracies
of the different forecasting models, and the bottom graph presents the objective function values (average weighted distribution times in minutes) obtained by
KB-EA combined with the forecasting models. The results show that, on almost all instances, FDAE obtains the highest prediction accuracies, and KB-EA
combined with FDAE obtains the shortest distribution times.
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Fig. 8. The values of RAT (defined in Eq. (18)) of the comparative models.
The results show that, if the forecasting accuracy is decreased by one percent,
the weighted distribution time will be increased by around one minute,
demonstrating the contribution of the forecasting accuracy to the distribution
performance.
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