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Balancing Common Treatment and Epidemic
Control in Medical Supplies Procurement:

Transform-and-Divide Evolutionary Optimization

Abstract—Balancing common disease treatment and epidemic
control is a key objective of medical supplies procurement in
hospitals during a pandemic such as COVID-19. This problem
can be formulated as a bi-objective optimization problem for
simultaneously optimizing the effects of common disease treat-
ment and epidemic control. However, due to the large number of
supplies, difficulties in evaluating the effects, and the strict budget
constraint, it is difficult for existing evolutionary multiobjective
algorithms to efficiently approximate the Pareto front of the
problem. In this paper, we present an approach that first
transforms the original high-dimensional, constrained multiob-
jective optimization problem to a low-dimensional, unconstrained
multiobjective optimization problem, and then evaluates each
solution to the transformed problem by solving a set of simple
single-objective optimization subproblem, such that the problem
can be efficiently solved by existing evolutionary multiobjective
algorithms. We applied the transform-and-divide evolutionary
optimization approach to six hospitals in Zhejiang Province,
China, during the peak of COVID-19. Results showed that the
proposed approach exhibits significantly better performance than
that of directly solving the original problem. Our study has
also shown that transform-and-divide evolutionary optimization
based on problem-specific knowledge can be an efficient solution
approach to many other complex problems and, therefore,
enlarge the application field of EAs.

Index Terms—Medical supplies procurement, epidemic control,
multiobjective optimization, evolutionary algorithms, transform-
and-divide.

I. INTRODUCTION

IN COVID-19, hospitals must procure medical supplies
for epidemic control. However, the total budget of any

hospital are limited: if a hospital procures too many supplies
for epidemic control, it has to reduce supplies for common
disease treatment, which would damage its medical services.
Consequently, it is important for hospitals to balance be-
tween common disease treatment and epidemic control in
medical supplies procurement in a pandemic. The problem
of determining the purchase quantity of each supply can
be formulated as a bi-objective optimization problem for
simultaneously optimizing the effect of epidemic control and
effect of common disease treatment. There are three main
challenges to solving this problem. The first is to evaluate the
effects of epidemic control and common disease treatment in
a relatively accurate manner. The second is to meet the budget
constraint, which is often strict in the pandemic. The third is
to approximate the Pareto front of the problem in an efficient
manner. For the first challenge, we develop a procedure to
simulate the arrival and treatment of cases of infection and
cases of common diseases according to a general principle of
disease treatment and medical supplies usage. However, this

also makes evaluating the objective functions too expensive.
Moreover, a major hospital often involves tens of thousands of
medical supplies, which makes the dimension of the solution
space too high. The combination of these reasons makes the
problem very difficult to solve.

Decomposition is a general approach to solving large
complex problems that are beyond the reach of standard
techniques. Decomposition in optimization appears in early
work on large-scale linear programming problems from the
1960s [1]. Many problems with separable objective functions
are trivial to solve by mathematical methods. For additively
decomposed functions that are not able to optimize by standard
genetic algorithms, Mühlenbein and Mahnig [2] proposed the
factorized distribution algorithm that factors the distribution
into conditional and marginal distributions based on function
structures. Many combinatorial optimization problems can be
solved by using efficient methods to solve subproblems and
combining the results to the obtain solutions to the original
problems. Zheng and Xue [3] utilized this characteristics
to automatically derive efficient problem-solving algorithms,
including evolutionary algorithms (EAs) that are mainly used
for NP-hard problems. Unfortunately, the medical supplies
procurement problem considered in this paper does not satisfy
the basic conditions of decomposition, because it is quite
common that one supply can be used in multiple diseases.
and the treatment of a disease can involve many supplies.

A multiobjective optimization problem is much more diffi-
cult than its single-objective counterpart, and decomposition is
also a basic strategy in multiobjective optimization. Zhang and
Li [4] proposed a multiobjective evolutionary algorithms based
on decomposition (MOEA/D), which decomposes a multiob-
jective optimization problem into a set of single-objective op-
timization subproblems using decomposition approaches such
as weighted sum, weighted Tchebycheff, and penalty-based
boundary interaction. However, for some problems, these
decomposition approaches may not be suitable for balancing
the diversity and convergence. Wang et al. [5] revolved this
difficulty by imposing a constraint to an unconstrained sub-
problem, where the improvement region of each subproblem is
determined by an adaptive control parameter. MOEA/D makes
an assumption that two neighboring subproblems should have
similar optimal solutions, but some combinatorial optimization
problems do not satisfy this assumption. Mei et al. [6] pro-
posed a decomposition-based memetic algorithm with neigh-
borhood search for multiobjective capacitated arc routing prob-
lem, which combines decomposition-based and domination-
based techniques for solution selection. Cai et al. [7] also
combined domination-based sorting and decomposition in a



2

multiobjective EA, which works with an internal population
evolved using a decomposition-based strategy and an external
archive maintained using a domination-based sorting. Jan
and Zhang [8] introduced a penalty function to MOEA/D to
deal with multiobjective constrained optimization problems.
Konstantinidis and Yang [9] adapted MOEA/D to solve a
K-connected deployment and power assignment problem by
introducing a problem-specific repair heuristic that transform-
s an infeasible solution into a feasible one. Zhang et al.
[10] extended MOEA/D for big optimization problems by
embedding a gradient-based local search. Chen et al. [11]
extended MOEA/D for constrained problems by assigning
each subproblem with an upper bound vector based on the ε-
constraint method. There have been many other extensions and
applications of MOEA/D in recent years [12]. Unfortunately,
we found that, although using decomposition-based strategies
in MOEA/D and other similar algorithms can reduce the
complexity to a certain degree, the performance of those
algorithms is still far from satisfactory in solving the medical
supplies procurement problem in practice.

In this study, we present a transform-and-divide approach to
efficiently solve the problem. First, we transform the original
problem of determining the purchase quantity of each supply
to a new problem of distributing the budget to epidemic control
and all common diseases. In our case studies, the dimension
of the transformed problem is only one to two percent of that
of the original problem. However, evaluating each solution
to the transformed problem is itself a nontrivial optimization
problem. Second, we divide the evaluation problem into a set
of low-dimensional, single-objective optimization subproblem.
We propose a hybrid evolutionary optimization approach,
which employs a multiobjective EA to evolve a population
of main solution to the transformed problem and uses a tabu
search algorithm to solve the divided subproblems. During
the peak of COVID-19, we applied the proposed approach
to six hospitals in Zhejiang Province, China. Results demon-
strated that the transform-and-divide evolutionary optimization
approach exhibits significantly better performance than that
of directly using multiobjective EAs to solve the original
problem. The main contributions of this paper are twofold:

• We propose a transform-and-divide evolutionary op-
timization approach to medical supplies procurement
and demonstrate its practicability and efficiency during
COVID-19.

• We show that using problem-specific knowledge to trans-
form and divide a complex optimization problem can
lead to competitive EAs for the problem. This approach
can be extend to many other problems and enlarge the
application field of EAs.

The remainder of this paper is organized as follows. Section
II presents the medical supplies procurement problem. Section
III simply describes how to directly use basic multiobjective
EAs to solve the original problem. Section IV proposes
the transform-and-divide evolutionary optimization approach.
section V presents the computational results. Section VI con-
cludes with a discussion.

II. PROBLEM DESCRIPTION

A. Supplies for Epidemic Control and Common Treatment

We consider a medical supplies procurement problem for-
mulated as follows. In a pandemic, a hospital plans to pro-
cure medical supplies, including a set S = {S1, S2, . . . , Sn}
of n supplies for epidemic control, and a set S′ =
{Sn+1, Sn+2, . . . , Sn+n′} of n′ supplies for normal disease
treatment. For each supply Sk, the current inventory is ak,
the unit price is ck, and the unit volume is vi. The problem
is to determine the purchase quantity xk of each supply
(1 ≤ k ≤ n+n′), such that the effects of epidemic control
and normal disease treatment are simultaneously optimized.

The supplies for epidemic control can be divided into two
classes. The first class consists of supplies such as latex gloves
and normal saline that must be used in the treatment of a
suspected case of infection; we use Ψ0 to denote the set
of these supplies, and use q0,k to denote the quantity of
each Sk ∈ Ψ0 required to treat a case. The second class
consists of supplies that are alternative in some treatment
items. Table I presents six treatment items and their alternative
supplies used for COVID-19 control in this study. The seven
sets of supplies are denoted by Ψ1,Ψ2, . . . ,Ψ6, respectively,
and the quantity of each alternative Sk ∈ Ψj required to
treat a case is denoted by qj,k. Different alternatives have
different treatment effects, and the treatment effect of using
each alternative Sk ∈ Ψj is estimated as ej,k. For example,
the effects of peroxide, impermeable gown, and normal gown
in “body protection” item are estimated as 1, 0.9 and 0.7,
respectively. If we choose the Skj ∈ Ψj for the j-th treatment
item (1≤j≤6), the corresponding epidemic control effect on
the case is empirically estimated as:

E(k1, ...k6)=(0.4e1,k1
+0.6e2,k2

)e3,k3
(0.2e4,k4

+0.8e5,k5
)e6,k6

(1)
The hospital is capable of treating a set D =

{D1, D2, . . . , Dm} of m diseases. Similarly, for each disease
Di, the set of supplies that must be used is denoted by Ψi,0,
and the set of supplies that are alternative in Ji treatment items
are denoted by Ψi,1,Ψi,2, . . . ,Ψi,Ji , respectively. The quantity
of each Sk ∈ Ψi,0 required to treat a case is qi,0,k, and the
quantity of each alternative Sk ∈ Ψi,j required to treat a case
is qi,j,k. Different alternatives have different treatment effects,
and the treatment effect of using Sk ∈ Ψi,j is estimated as
ei,j,k. If we choose the Skj ∈ Ψi,j for the j-th treatment
item (1 ≤ j ≤ Ji), the corresponding treatment effect on the
case is empirically estimated by a therapeutic effect function
Ei(k1, k2, ..., kJi

). Like Eq. (1), the typical expression of Ei

is a weighted sum or product of ei,j,k [13].

B. Number of Cases

Let T be the procurement decision cycle. In our case study,
the hospital procures medical supplies every 15 days. The
supply quantities are determined based on the estimation of
the number of hospital visits in the next decision cycle. For
the number of cases of each disease Di, we estimate three
values: the expected value ri, lower limit (optimistic value)
ri, and upper limit (pessimistic value) ri. The values can be
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TABLE I
ALTERNATIVE SUPPLIES FOR EPIDEMIC CONTROL IN THIS STUDY.

Items Body protection Face protection Detection Oxygen therapy Antivirus Disinfectant

Supplies

protective clothing face shield nucleic acid kit high-flow nasal cannula α-interferon peroxide
impermeable gown N95 mask+goggle antibody kit nasal cannula lopinavir chlorine-containing
normal gown surgical mask+goggle oxygen mask chloroquine phosphate alcohols

arbidol

obtained based on historical morbidity data and environmental
influence factors [14]–[17].

The number of suspected cases of epidemic infection is
estimated based on the number of hospital visits of different
diseases. For each disease Di, we estimate a probability pi
that a patient of Di is a suspected case of COVID-19. In
general, a disease having more similar symptoms with the
epidemic has a higher pi. For example, an acute respiratory
infectious disease has a high pi. For a disease (such as fracture)
that is unrelated with the epidemic, we set pi to the current
incidence pe of infection (including suspected infection) in
the local region. We also estimate an average number r′i of
accompanying persons of a patient of Di; in general, a critical
disease has a large r′i. The probability that an accompanying
person of a patient of Di is a suspected case of COVID-19
is p′i, which is set to 0.5pi if Di has similar symptoms with
the epidemic and pe otherwise. The total number of suspected
cases of infection in the next decision cycle is estimated as
follows (we use ri as we take a serious or pessimistic view of
epidemic control):

r=

m∑
i=1

(pi + p′ir
′
i)ri (2)

C. Objective Function Evaluation

A solution to the medical supplies procurement problem
can be represented by a (n+ n′)-dimensional vector x =
{x1, . . . , xn, xn+1, . . . , xn+n′}. The fitness of x is evaluated by
two objective functions: (1) the epidemic control effect Υ(x),
which is the sum of treatment effects of all suspected cases
of infection; (2) the common disease treatment effect Υ′(x),
which is the weighted sum of treatment effects of all common
cases, where the weight of each disease Di is wi. It is assumed
that the arrival time of cases follows a uniform distribution.
That is, for each disease Di, as the expected number of cases
in a decision cycle of 15 days is ri, then there is a case arriving
every (15×hw)/ri hours, while hw is the daily working hours
(24 for emergency diseases and 8 for emergency diseases in
our study). Moreover, there is one suspected case of infection
in every 1/(pi + p′ir

′
i) cases of Di.

A general principle of disease treatment is “focusing on
the current patient”, i.e., whenever a new case arrives, the
physician always chooses the most effective supply from
the available alternatives, as he does not know how many
cases would come later. Based on this first-come-first-served
discipline, we sort supplies in Ψj (1 ≤ j ≤ 6) or Ψi,j

(1≤ i≤m; 1≤j≤Ji) in nonincreasing order of ej,k or ei,j,k,
and simulate the arrival and treatment of all cases according
to the procedure shown in Algorithm 1 to calculate the values
of Υ(x) and Υ′(x). In Algorithm 1, the boolean variable tr

denotes whether the remaining supplies are capable of treating
a suspected case of epidemic infection, and tri denotes whether
the remaining supplies are capable of treating a case of Di.

Algorithm 1: Procedure for evaluating the effects of
epidemic control and disease treatment for the original
problem.

1 Initialize Υ = 0, tr = true;
2 for i = 1 to m do initialize Υi = 0, tri = true;
3 for k = 1 to n+n′ do ak←ak+xk;
4 Start timing simulation;
5 while the decision cycle is not complete do
6 if a new case of Di arrives and tri = true then
7 foreach Sk ∈ Ψi,0 do
8 ak ← ak − qi,0,k;
9 if ak < qi,0,k then tri ← false;

10 for j = 1 to Ji do
11 let Sk be the first supply in Ψi,j ;
12 while ak < qi,j,k do
13 Remove Sk from Ψi,j ;
14 if Ψi,j = ∅ then tri ← false;

15 let kj = k;
16 ak ← ak − qi,j,k;

17 Υi ← Υi + Ei(k1, . . . , kJi);

18 if the case is a suspected infected case and tr = true then
19 foreach Sk ∈ Ψ0 do
20 ak ← ak − q0,k;
21 if ak < q0,k then tr← false;

22 for j = 1 to 6 do
23 let Sk be the first supply in Ψj ;
24 while ak < qj,k do
25 Remove Sk from Ψj ;
26 if Ψj = ∅ then tr← false;

27 ak ← ak − qj,k;
28 let kj = k;

29 Υ← Υ + E(k1, . . . , k6);

30 return Υ(x) = Υ and Υ′(x) =
∑m

i=1 wiΥi.

D. Constraints

A procurement solution x must satisfy problem constraints.
First, the total procurement cost cannot exceed the budget C:

n+n′∑
k=1

ckxk ≤ C (3)

The hospital should perform its normal functions. In this
study, it is required that the hospital is able to treat ri
(the lower limit of the number) cases of each disease Di.
These constraints can be tested by simulating the arrival and
treatment of the lower numbers of cases in Algorithm 1: if
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any new case cannot be treated, i.e., whenever the condition
tri = false (Line 6 of Algorithm 1) is triggered, the constraint
is violated.

It is also required that the hospital is able to treat r suspected
cases of epidemic infection. Whenever the condition tr= false
(Line 18) in Algorithm 1 is triggered, the constraint is violated.

III. BASIC EVOLUTIONARY OPTIMIZATION METHODS

For the above (n+n′)-dimensional, constrained bi-objective
optimization problem, we can use evolutionary constrained
multiobjective algorithms to search for the Pareto optimal
solutions. The search range of each dimension k is [xk, xk].
The lower limit xk is set to the total quantity of Sk required
in non-alternative treatment items for all cases:

xk =

{
max(0, rq0,k − ak), 1≤k≤n
max(0,

∑m
i=1 riqi,0,k − ak), n+1≤k≤n+n′

(4)
The upper limit xk can be set to the total required quantity

of Sk under the assumption that Sk is always chosen whenever
Sk is an alternative. That is, if 1≤k≤n, we set

xk =
(∑

j′∈{j|0≤j≤6∧Sk∈Φj}
rqj′,k

)
− ak (5)

Otherwise, we set

xk =
(∑

(i′,j′)∈{(i,j)|1≤i≤m∧0≤j≤Ji∧Sk∈Φi,j}
ri′qi′,j′,k

)
− ak

(6)
We adopt the following four well-known evolutionary con-

strained multiobjective algorithms to solve the considered
problem:

• The nondominated sorting genetic algorithm II (NSGA-
II) with the constrained-domination principle [18].

• The multiobjective evolutionary algorithm based on de-
composition (MOEA/D) [4] with a penalty function for
constrain handling [8].

• The differential evolution with self-adaptation and lo-
cal search for constrained multiobjective optimization
(DECMOSA) [19], which combines the constrained-
domination principle and penalty function for constrain
handling.

• The constrained multiobjective evolutionary algorithm
(CMOEA) based on an adaptive penalty function and a
distance measure [20].

The last three algorithms employ penalty functions for
constrain handling. Violation of constraint (3) is calculated as
max(0,

∑n+n′

k=1 ckxk − C). For constraints that all suspected
cases of infection and the lower number of cases of each
common disease must be treated, we set the violation of each
constraint equal to the budget C, i.e., the violation is C times
the number of false tri and tr in Algorithm 1.

Nevertheless, the performance of all the above algorithms is
not satisfying, mainly because the dimension (n+n′) is very
high (approximately 20,000∼50,000 in a major hospital in our
case study) and the evaluation of a solution using Algorithm
1 is computationally expensive.

Fig. 1. The existence probability.

IV. A NEW TRANSFORM-AND-DIVIDE EVOLUTIONARY
OPTIMIZATION METHOD

In this section, we propose a new transform-and-divide
approach to efficiently solve the problem. First, we trans-
form the original high-dimensional, constrained bi-objective
optimization problem to a low-dimensional, unconstrained bi-
objective optimization problem, which can be solved using
evolutionary (unconstrained) multiobjective algorithms. The
evaluation of each solution to the transformed problem can
be divided into a set of low-dimensional, single-objective
optimization subproblems, which can be solved using a tabu
search algorithm.

A. Problem Transformation

We transform the original problem of determining the
purchase quantity of each supply to a problem of determining
the purchase budget for epidemic control and the purchase
budget for each disease. First of all, we calculate the cost for
purchasing the supplies that must be used in the non-alternative
treatment items and, therefore, obtain the remaining budget as:

C ′ = C −
n+n′∑
k=1

ckxk (7)

Consequently, the transformed problem is to distribute C ′

to m+1 components, denoted by {y0, y1, . . . , ym}, where y0

is the budget for purchasing alternative supplies for epidemic
control, and yi is the budget for purchasing alternative supplies
for treating disease Di (1 ≤ i ≤ m). The dimension of the
transformed problem is m (approximately 300∼600 in a major
hospital in our case study), which is significantly smaller than
the dimension n+n′ of the original problem.

Moreover, the search range of each dimension of the trans-
formed problem is also much smaller than that of the original
problem. For epidemic control, the lower limit y0 of budget
y0 can be obtained using the following steps:

1) Use supplies in storage to treat as many suspected cases
of infection as possible;

2) If there is no remaining case, set y0 =0;
3) Else, for each remaining case, always purchase the cheap-

est supply among the alternatives, and set y0 to the total
purchase cost.

And the upper limit y0 of budget y0 can be obtained using
the following steps:

1) Treat each suspected case in the most effective way, i.e,
always select the supply with the maximum treatment
effect ej,k among the alternatives, and calculate the total
required quantity of each supply;

2) Calculate the purchase quantity of each supply, and set
y0 to the total purchase cost.

Therefore, the search range of y0 is limited to [y0, y0]. We
can obtain the search range [yi, yi] for each yi in a similar
manner. In our case study, the average value of (yi−yi) is
approximately 75 (in unit of 100 RMB), while the average
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value of (xk−xk) is approximately 1100 (in minimum order
quantity); consequently, by transformation, the number of all
possible solutions is reduced from approximately 110035000 to
75450.

B. Problem Division

The solution space of the transformed problem is signifi-
cantly smaller than that of the original problem. But how to
evaluate a solution y = {y0, y1, . . . , ym} to the transformed
problem? The task can be divided into m+ 1 optimization
subproblems. The first subproblem is to determine the pur-
chase quantities under the budget y0 so as to maximize the
epidemic control effect. Each of the remaining m subproblems
is to determine the purchase quantities under the budget yi
so as to maximize the overall treatment effect of disease Di

(1≤ i≤m).
However, the division raises a difficulty in allocating sup-

plies in storage to different diseases. We overcome this d-
ifficulty by employing a procedure similar to Algorithm 1
to simulate the arrival and treatment of all cases. But the
procedure has two differences from Algorithm 1:
• Initially, we only consider supplies in storage, i.e., Line

3 of Algorithm 1 is not executed.
• If there is no supply in storage that can be used for a

treatment item (i.e., the condition in Line 14 or Line 26
is satisfied), we temporarily purchase “in advance” the
cheapest alternative supply for the item.

The procedure also produces the “cheapest” solution to each
subproblem, which can be evolved to an optimal or near-
optimal solution, as described in the next subsection.

C. Hybrid Evolutionary Optimization

The proposed method employs an evolutionary multiobjec-
tive algorithm to evolve a population of main solutions to the
transformed problem, and employs a tabu search algorithm to
solve the subproblems for evaluating each main solution.

For the first subproblem, each solution z can be represented
by six vectors as follows (the vector lengths do not need to
be the same):

{z1,1, z1,2, . . . , z1,|Ψ1|}
{z2,1, z2,2, . . . , z2,|Ψ2|}

...
{z6,1, z6,2, . . . , z6,|Ψ6|}

where zj,k denotes the number of cases that use the k-th
alternative supply for the j-th treatment item, and each vector
satisfies

(∑|Ψj |
k=1 zj,k

)
= r.

The procedure described in Sec. IV-B produces the cheapest
solution to the subproblem, denoted by z†. First, we con-
tinually use the following steps to improve z† by replacing
an alternative supply to a more effective alternative for a
randomly selected case until z† cannot be further improved:

1) Randomly selecting two components zj,k and zj,k′ in a
vector satisfying zj,k′>0;

2) Set zj,k′ = zj,k′−1 and zj,k = zj,k+1 if doing so would
not violate the budget constraint.

Starting from the improved z†, the tabu search algorithm
continually uses the following steps to search around and
improve z† until the stopping condition is satisfied:

1) Generate kN neighboring solutions of the current z† as
the current solution, each being obtained by randomly
selecting two components zj,k and zj′,k′ satisfying k <
|Ψj |, k′ < |Ψj′ |, zj,k > 0, and zj′,k′+1 > 0, and setting
zj,k = zj,k−1, zj,k+1 = zj,k+1+1, zj′,k′ = zj′,k′ +1, and
zj′,k′+1 = zj′,k′+1−1, if doing so would not violate the
budget constraint;

2) Select the best neighbor that is not tabued or is better
than the current z†, make z† move to this neighbor, and
add this move to the tabu list.

The remaining m subproblems can be solved by tabu search
in a similar way. As demonstrated by the experiments, the
tabu search algorithm can quickly obtain optimal solutions
for most subproblem instances, given that the dimensions of
the subproblems are relatively small. For example, as we can
observe from Table I, the dimension of the first subproblem
is 18 (note that the last dimension of each vector can be
determined by other dimensions of the vector, and the actual
dimension in the solution space is only 12). Therefore, the
tabu search algorithm is very suitable for the subproblems, as
it will be invoked many times to evaluate main solutions.

For the main transformed problem, we adopt the following
evolutionary multiobjective algorithms to evolve main solu-
tions and invoke the tabu search algorithm:
• NSGA-II [18].
• MOEA/D [4].
• An extension of differential evolution for multiobjective

optimization (GDE3) [21].
• A multiobjective particle swarm optimization (MOPSO)

algorithm [22] which extends comprehensive learning
[23] for multiobjective optimization.

V. COMPUTATIONAL RESULTS

A. Problem Instances

We use the proposed method for medical supplies procure-
ment in Zhejiang Hospital of Traditional Chinese Medicine
(ZJHTCM) from 15 Feb to 15 Apr, 2020, the peak of COVID-
19 in Zhejiang Province, China. Since 15 Mar, we also
extend the application to other five hospitals (denoted by H1–
H5). Therefore, there are total 14 real-world instances of the
medical supplies procurement problem. Table II summarizes
the main characteristics of the instances, where

∑
i ri denotes

the total expected number of cases of all common diseases, J
denotes the average treatment items per disease, |Υ| denotes
the average number of alternatives per treatment item, and
the budget C is in RMB. The instances are solved on a
workstation with an i7-6500 2.5GH CPU, 8GB DDR4 RAM,
and an NVIDIA Quadro M500M card.

B. Performance for Solving the Subproblem

Before testing the algorithms for solving the main problem,
we first test the performance of the tabu search algorithm
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TABLE II
SUMMARY OF THE REAL-WORLD INSTANCES OF THE MEDICAL SUPPLIES PROCUREMENT PROBLEM.

Hospital Period m n+n′
∑

i ri r J |Υ| C

ZJHTCM

2nd half Feb 476 32,535 71,196 64 5.84 7.27 3,516,000
1st half Mar 476 32,416 76,580 38 5.84 7.27 3,378,000
2nd half Mar 479 32,628 78,331 34 5.86 7.29 3,022,000
1st half Apr 479 32,628 90,459 36 5.86 7.32 3,698,000

H1 2nd half Mar 162 17,522 8,208 4 7.46 5.41 521,000
1st half Apr 162 17,510 13,640 3 7.46 5.41 830,000

H2 2nd half Mar 193 15,666 17,353 24 8.06 5.25 785,000
1st half Apr 193 15,681 19,309 14 8.06 5.25 902,500

H3 2nd half Mar 328 24,469 32,052 14 7.84 5.87 1,682,000
1st half Apr 328 24,469 42,667 17 7.84 5.97 2,127,000

H4 2nd half Mar 393 27,600 35,733 50 6.90 6.13 2,415,500
1st half Apr 399 27,215 38,452 28 6.87 6.14 2,607,200

H5 2nd half Mar 573 35,906 60,900 27 6.66 5.36 3,920,000
1st half Apr 573 34,902 75,393 30 6.66 5.48 4,818,000

for subproblems. From the above real-world main problem
instances, we select 16 subproblem instances, the dimensions
D of which range from 12 to 72. For the algorithm, we set
the neighborhood size kN to 2D, tabu length to 12, and the
maximum number of iterations to 50D. On each instance,
we run the algorithm 50 times to test whether and how long
can obtain the exact optimal solution (validated by an exact
branch-and-bound algorithm [24]).

Fig. 2 presents the convergency curves (averaged over the 50
runs) of the tabu search algorithm on the subproblem instances.
The algorithm reaches the optima within 100 iterations (10
ms in our computing environment) when the problem dimen-
sion is smaller than 24, within 200 iterations (30 ms) when
the problem dimension is smaller than 40, and within 400
iterations (120 ms) on all instances. In our case study, the
average dimension of subproblem instances is approximately
37, which can be solved using approximately 160 iterations
(25 ms); the dimension of the largest instance is 72, which can
be solved using 369 iterations (116 ms). Using multithreading
and GPU acceleration, the average CPU time for evaluating a
main solution to a problem of 400 diseases is approximately
600 ms.

C. Performance for Solving the Original and Transformed
Problems

For each main problem instance, we use four evolution-
ary constrained multiobjective algorithms, including NSGA-
II with constraint handling (denoted by NSGA-II-C) [18],
MOEA/D with constraint handling (denoted by MOEA/D-C)
[8], DECMOSA [19], and CMOEA [20], to solve the original
problem, and four evolutionary multiobjective algorithms, in-
cluding NSGA-II [18], MOEA/D [4], GDE3 [21], and MOPSO
[22], all combined with tabu search, to solve the transformed
problem. The control parameters of all algorithms are tuned
on the whole set of instances. For a fair comparison, all the
algorithms use the same stopping criterion that the CPU time
does not exceed three hours, which is also applied in our
practices. On each instance, each algorithm is run for 30 times.

Fig. 3 compares the hyperarea (the area under the Pareto-
approximated front in objective space, also known as the
hypervolume) [25], [26] obtained by each algorithm on each
main problem instances. It is clear that the last four algorithms

using the transform-and-divide method exhibit significant per-
formance advantages over the first four algorithms. On most
instances, the median hyperareas of the four transform-and-
divide EAs are approximately two to three times of the basic
EAs. In general, performance of the transform-and-divide EAs
is mainly affected by m (the number of diseases) and C
(the total budget), while performance of the basic EAs is
mainly affected by n+ n′ (the number of supplies). This
is why all algorithms obtain relatively high hyperareas on
the two instances of H1, whose m, n+n′, and C are the
smallest among the instances. Nevertheless, the performance
advantages of the transform-and-divide EAs over the basic
EAs are very significant on the two instance. On the last two
instances of H5, the values of these parameters are the largest,
and the performance advantages of the transform-and-divide
EAs over the basic EAs are not so significant. On most other
instances, the maximum hyperareas of the basic EAs are often
smaller than the minimum hyperareas of the transform-and-
divide EAs. This demonstrates that the proposed transform-
and-divide method can significantly reduce the difficulty of
solving the complex ordinal problem.

We also make pairwise comparison between NSGA-II-C
and NSGA-II as well as between MOEA/D-C and MOEA/D
in terms of the coverage (Cov) metric [25] of the resulting
solution set obtained by the algorithm, i.e., Cov(X,X ′) is
fraction of solution set X that are strictly dominated by at
least one solution of X ′. As shown in Table III, on the first
11 instances, none of solutions obtained by the transform-
and-divide EA is dominated by at least a solution obtained
by the corresponding basic EA; on the last three instances,
only a very small fraction (1%∼2%) of solutions obtained
by the transform-and-divide EA are dominated by the best
solutions obtained by the corresponding basic EA. On the
contrary, in most cases, 100% solutions obtained by the
basic EA are dominated by at least a solution obtained by
its transform-and-divide counterpart; in the remaining cases,
almost all (over 90%) solutions obtained by the basic EA are
dominated by at least a solution obtained by its transform-
and-divide counterpart. Consequently, decision-makers always
prefer to adopt solutions produced by transform-and-divide
EAs, while solutions obtained by the basic EAs can hardly
provide reference.



7

0 0.7 1.4 2.1 2.8 3.5

30

35

40

45

50

55

0 10 20 30 40 50

f *
ms

iter

(a) D=12

0 0.75 1.5 2.25 3 3.75

20

25

30

35

40

45

50

0 10 20 30 40 50

f *
ms

iter

(b) D=15

0 0.9 1.8 2.7 3.6 4.5 5.4

20
30
40
50
60
70
80
90

0 15 30 45 60 75

f * ms

iter

(c) D=18

0 1 2 3 4 5 6

15
20
25
30
35
40
45
50

0 15 30 45 60 75

f *
ms

iter

(d) D=21

0 2 4 6 8 10

15
20
25
30
35
40
45
50
55

0 20 40 60 80 100

f *
ms

iter

(e) D=24

0 2.5 5 7.5 10 12.5

15

25

35

45

55

65

75

0 25 50 75 100 125

f *
ms

iter

(f) D=27

0 3 6 9 12 15

10

20

30

40

50

60

0 25 50 75 100 125

f *
ms

iter

(g) D=30

0 4 8 12 16 20

10
20
30
40
50
60
70
80

0 30 60 90 120 150

f *
ms

iter

(h) D=34

0 6 12 18 24 30

10

20

30

40

50

60

70

0 40 80 120 160 200

f *
ms

iter

(i) D=38

0 8 16 24 32 40

10

20

30

40

50

60

0 50 100 150 200 250

f * ms

iter

(j) D=42

0 8 16 24 32 40 48

10

20

30

40

50

60

0 50 100 150 200 250

f *

ms

iter

(k) D=46

0 12 24 36 48 60 72

10

20

30

40

50

60

0 60 120 180 240 300

f *
ms

iter

(l) D=50

0 13 26 39 52 65 78

10
20
30
40
50
60
70
80
90

0 60 120 180 240 300

f *
ms

iter

(m) D=55

0 20 40 60 80 100

0

15

30

45

60

75

0 80 160 240 320 400

f * ms

iter

(n) D=60

0 20 40 60 80 100

0

10

20

30

40

50

60

0 80 160 240 320 400

f *
ms

iter

(o) D=66

0 20 40 60 80 100 120

0

15

30

45

60

75

90

0 80 160 240 320 400

f *
ms

iter

(p) D=72

Fig. 2. Convergency curves of the tabu search algorithm on subproblem instances. The bottom horizontal axis is the number of iterations, the top horizontal
axis is the CPU time (in milliseconds), the vertical axis is the objective function value, and f∗ is the exact optimal objective function value.

VI. CONCLUSION

This paper presents a transform-and-divide evolutionary
optimization approach to medical supplies procurement under
the background of COVID-19. Our approach first transform-
s the original high-dimensional, constrained multiobjective
optimization problem to a low-dimensional, unconstrained
multiobjective optimization problem, and then evaluates each
solution to the transformed problem by solving a set of
simple single-objective optimization subproblem, such that
the problem can be efficiently solved by existing evolution-
ary multiobjective algorithms. We applied the transform-and-
divide evolutionary optimization approach to six hospitals in
Zhejiang Province, China, during the peak of COVID-19.
Results showed that our approach exhibits significantly better
performance than that of directly solving the original problem.
The proposed transform-and-divide evolutionary optimization
based on problem-specific knowledge can be an efficient solu-

tion approach to many other complex problems and, therefore,
enlarge the application field of EAs.
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