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a b s t r a c t

During the outbreak of the novel coronavirus pneumonia (COVID-19), there is a huge demand for
medical masks. A mask manufacturer often receives a large amount of orders that must be processed
within a short response time. It is of critical importance for the manufacturer to schedule and
reschedule mask production tasks as efficiently as possible. However, when the number of tasks is
large, most existing scheduling algorithms require very long computational time and, therefore, cannot
meet the needs of emergency response. In this paper, we propose an end-to-end neural network,
which takes a sequence of production tasks as inputs and produces a schedule of tasks in a real-
time manner. The network is trained by reinforcement learning using the negative total tardiness as
the reward signal. We applied the proposed approach to schedule emergency production tasks for a
medical mask manufacturer during the peak of COVID-19 in China. Computational results show that
the neural network scheduler can solve problem instances with hundreds of tasks within seconds. The
objective function value obtained by the neural network scheduler is significantly better than those
of existing constructive heuristics, and is close to those of the state-of-the-art metaheuristics whose
computational time is unaffordable in practice.

© 2020 Elsevier B.V. All rights reserved.
∗ Corresponding author.
E-mail address: yujun.zheng@computer.org (Y.-J. Zheng).
ttps://doi.org/10.1016/j.asoc.2020.106790
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1. Introduction

Since the outbreak of the novel coronavirus pneumonia
(COVID-19), there has been an ever-growing demand for medical
masks. A mask manufacturer often receives a large amount of
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rders that must be processed within a short response time.
herefore, it is of critical importance for the manufacturer to
chedule mask production tasks as efficiently as possible. More-
ver, as new orders arrive continuously, the manufacturer also
eed to reschedule production tasks frequently. This brings a
reat challenge for the manufacturer to produce high-quality
cheduling solutions rapidly.
The motivation of this paper comes from our cooperation with

HENDE company, a medical apparatus manufacturer in Zhejiang
rovince, China, during COVID-19. The manufacturer has a mask
roduction line that can produce different types masks, such
s disposable medical masks, surgical masks, medical protective
asks, and respiratory masks. The daily output is nearly one
undred thousand. However, on each day since the outbreak
f COVID-19, it receives tens to hundreds of orders, the total
emand of which ranges from hundreds of thousands to a mil-
ion masks, and almost all orders have tight delivery deadlines.
he manufacturer asked our research team to develop a pro-
uction scheduler that can schedule hundreds of tasks within
econds. During the COVID-19 pandemic, a lot of medical supply
anufacturers having similar requirements of production task
cheduling.
Scheduling production tasks on a production line can be for-

ulated as a machine scheduling problem which is known to
e NP-hard [1]. Exact optimization algorithms (e.g., [2–5]) of-
en have very large computational times that are infeasible on
ven moderate-size problem instances. As for moderate- and
arge-size instances optimal solutions are rarely needed in prac-
ice, heuristic approximation algorithms, including constructive
euristics (e.g., [6–8]) and metaheuristic evolutionary algorithms
e.g., [9–15]), are more feasible to achieve a trade-off between
ptimality and computational costs. However, the solution fitness
f constructive heuristics is often low for even moderate-size
nstances. For metaheuristics, the number of repeated generations
nd objective function evaluations for solving large-size instances
till takes a relatively long time and, therefore, cannot satisfy the
equirement of real-time scheduling. Table 1 gives an overview
f main classes of algorithms for NP-hard production scheduling
roblems.
In this paper, we propose a deep reinforcement approach for

cheduling real-time production tasks. The scheduler is a deep
eural network (DNN), which consists of an encoder that takes a
equence of production tasks as inputs to predict a distribution
ver different schedules, and a decoder that predict the prob-
bility of selecting a task into the schedule at each time step.
he network parameters are optimized by reinforcement learning
sing the negative total tardiness as the reward signal. After
eing trained on sufficient (unlabeled) instances following the
istribution of the problem, the network can directly produce
solution for a new instance within a very short time. We

pplied the DNN scheduler to mask production scheduling in the
HENDE manufacturer during the peak of COVID-19 in China.
omputational results show that the proposed method can solve
roblem instances with hundreds of tasks within seconds. The
bjective function value (total weighted tardiness) produced by
he DNN scheduler is significantly better than those of existing
onstructive heuristics such as the Nawaz, Enscore and Ham
NEH) heuristic [6] and Suliman heuristic [7], and is very close to
hose of the state-of-the-art metaheuristics whose computational
ime is obviously unaffordable in practice.

The remainder of this paper is organized as follows. Section 2
riefly reviews the related work on machine learning methods for
cheduling problems. Section 3 describes the considered emer-
ency production scheduling problem. Section 4 describes the
NN scheduler in detail, including the model architecture and
earning algorithm. Section 5 presents the experimental results,
nd finally Section Section 6 concludes with a discussion.
2

2. Related work

To solve NP-hard combinatorial optimization problems, clas-
sical algorithms, including exact optimization algorithms, heuris-
tic optimization algorithms, and metaheuristic algorithms, are
essentially search algorithms that explore the solution spaces
to find optimal or near-optimal solutions [8]. Using end-to-end
neural networks to directly map a problem input to a solu-
tion is another research direction that has received increasing
attention [17]. The earliest work dates back to Hopfield and
Tank [18], who applied a Hopfield-network to solve the travel-
ing salesman problem (TSP). Simon and Takefuji [19] modified
the Hopfield network to solve the job-shop scheduling problem.
However, the Hopfield network is only suitable for very small
problem instances. Based on the premise that optimal solutions
to a scheduling problem have common features which can be
implicitly captured by machine learning, Weckman et al. [20]
proposed a neural network for scheduling job-shops by capturing
the predictive knowledge regarding the assignment of operation’s
position in a sequence. They used solutions obtained by genetic
algorithm (GA) as samples for training the network. To solve the
flow shop scheduling problem, Ramanan et al. [21] used a neural
network trained with optimal solutions of known instances to
produce quality solutions for new instances, which are then given
as the initial solutions to improve other heuristics such as GA.
Such methods combining machine learning and metaheuristics
are still time-consuming on large problems.

Recently, deep learning has been utilized to optimization al-
gorithm design by learning algorithmic decisions based on the
distribution of problem instances. Vinyals et al. [22] introduced
the pointer network as a sequence-to-sequence model, which
consists in an encoder to parse the input nodes, and a decoder
to produce a probability distribution over these nodes based
on a pointer (attention) mechanism over the encoded nodes.
They applied the pointer network to solve TSP instances with
up to 100 nodes. However, the pointer network is trained in
a supervised manner, which heavily relies on sample instances
with known optimal solutions which are expensive to obtain.
Nazari et al. [23] addressed this difficulty by using reinforce-
ment learning to calculate the rewards of output solutions and
introducing an attention mechanism to address different parts of
the input. They applied the model to solve the vehicle routing
problem (VRP). Kool et al. [16] used a different decoder based
on a context vector and improved the training algorithm based
on a greedy rollout baseline. They applied the model to several
combinatorial optimization problems including TSP and VRP. For
online scheduling of vehicle services in large transportation net-
works, Yu et al. [24] also employed reinforcement learning to
train a deep graph embedded pointer network, which employs an
auxiliary critic neural network to estimate the expected output.
Peng et al. [25] presented a dynamic attention model with dy-
namic encoder–decoder architecture to exploit hidden structure
information at different construction steps, so as to construct
better solutions. Solozabal et al. [26] extended the neural com-
binatorial optimization approach to constrained combinatorial
optimization, where solution decisions are inferred based on both
the reward signal generated from objective function values and
penalty signals generated from constraint violations. However,
to our knowledge, studies on deep learning approaches for ef-
ficiently solving emergency production scheduling problems are
still few.

3. Medical mask production scheduling problem

In this section, we formulate the scheduling problem as fol-
lows (the variables are listed in Table 2). The manufacturer has K
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Table 1
Advantages and disadvantages of main classes of algorithms for NP-hard production scheduling problems.

Solution quantity Computational time Typical work

Exact optimization
algorithms

Optimality guarantee Long (exponential in problem size) [2–5]

Constructive
heuristics

Low for moderate and large
problems

Short (typically polynomial in problem size) [6–8]

Metaheuristics Near-optimal or high-quantity Moderate (polynomial in the number of
generations times problem size)

[9–15]

Neural optimization Typically between constructive
heuristics and metaheuristics

Short (polynomial in problem size) [16,17]
orders, denoted by O = {O1,O2, . . . ,OK }, to be processed. Each
rder Ok is associated with a set Φk of production tasks (jobs),
nd each task specifies the required type and number of masks.
ach order Ok has an expected delivery time dk and an importance
eight wk defined according to its value and urgency. In our
ractice, the manager gives a score between 1–10 for each order,
nd then all weights are normalized such that (

∑K
k=1 wk) = 1.

Let J = {J1, J2, . . . , Jn} be the set of all tasks. These tasks need
o be scheduled on a production line with m machines, denoted
y M = {M1,M2, . . . ,Mm}. Each task Jj has exactly m operations,

where the ith operation must be processed on machine Mi with
a processing time tij (1 ≤ i ≤ m; 1 ≤ j ≤ n). Each machine can
process at most one task at a time, and each operation cannot be
interrupted. The operations of mask production typically include
cloth cutting, fabric lamination, belt welding, disinfection, and
packaging.

The problem is to decide a processing sequence π = {π1, π2,

. . . , πn} of the n tasks. Let C(πi, j) denote the completion time of
task πj on machine Mi. For the first machine M1, the tasks can be
sequentially processed immediately one by one:

C(π1, 1) = tπ1,1 (1)

C(πj, 1) = C(πj−1, 1)+ tπj,1, j = 2, . . . , n (2)

The first job π1 can be processed on each subsequent machine
Mi immediately after it is completed on the previous machine
Mi−1:

C(π1, i) = C(π1, i− 1)+ tπ1,i, i = 2, . . . ,m (3)

Each subsequent job πj can be processed on machine Mi only
when (1) the job πj has been completed on the previous machine
Mi−1; (2) the previous job πj−1 has been completed on machine
Mi:

C(πj, i) = max
(
C(πj, i− 1), C(πj−1, i)

)
+ tπj,i,

i = 2, . . . ,m; j = 2, . . . , n (4)

Therefore, the completion time of each order Ok is the com-
pletion time of the last task of the order on machine Mm:

T (Ok) = max
π∈Φk

C(π,m) (5)

The objective of the problem is to minimize the total weighted
tardiness of the orders:

min f (π) =
K∑

k=1

wk max(T (Ok)− dk, 0) (6)

If all tasks are available for processing at time zero, the above
formulation can be regarded as a variant of the permutation flow
shop scheduling problem which is known to be NP-hard [1].
When there are hundreds of tasks to be scheduled, the problem
instances are computationally intractable for exact optimization
algorithms, and search-based heuristics also typically take tens
of minutes to hours to obtain a satisfying solution. Moreover,
3

in a public health emergency such as the COVID-19 pandemic,
new orders may continually arrive during the emergency produc-
tion and, therefore, it needs to frequently reschedule production
tasks to incorporate new tasks into the schedules. The allow-
able computational time for rescheduling is even shorter, typical
only a few seconds. Hence, it is required to design real-time or
near-real-time rescheduling methods for the problem.

4. A neural network scheduler for emergence production task
scheduling

We propose a neural network scheduler to efficiently solve the
above production task scheduling problem. The network takes a
sequence of production tasks as inputs, and produce a schedule
of the tasks by sequentially selecting a task into the schedule at
each time step. We first use reinforcement learning to train the
network on a large number of unlabeled instances (exact optimal
solutions of which are not needed), and then use supervised
learning to fine tune the network on some labeled instances
(exact optimal solutions of which are known). Given a new in-
stance as the input to the network, it is expected to produce
a high-quality scheduling solution if the training instances well
represent the distribution of the scheduling problem. Since the
network is put into use, we periodically collect these real-world
instances and solve them with state-of-the-art metaheuristics
and, thus, construct new labeled instances to re-train the net-
work. The basic flow to apply our machine learning approach is
illustrated in Fig. 1.

4.1. Neural network model

The proposed neural network scheduler is based on the
encoder–decoder architecture [27]. Fig. 2 illustrates the archi-
tecture of the network. The input to the network is a problem
instance represented by a sequence of n tasks, each of which is
described by a (m+2)-dimensional vector xj = {pj,1, pj,2, . . . , pj,m,

dk, wk} that consists the processing times on the m machines
and the expected delivery time and weight importance of the
corresponding order. To facilitate the processing of the neural
network, all inputs are normalized into [0,1], e.g., each dk is
transformed to (dk−dmin)/(dmax−dmin), where dmin = min1≤k≤K dk
and dmax = max1≤k≤K dk.

The encoder is a recurrent neural networks (RNN) with long
short-term memory (LSTM) [28] cells. An LSTM takes a task xj
as input at a time and transforms it to a hidden state hj by
increasingly computing the embedding of the inputs (where att
denotes the transformation by LSTM):

h1 = att(h1, x1) = encode(x1)
h2 = att(h1, x2) = encode(x1, x2)

...

h = att(h , x ) = encode(x , x , . . . , x ) (7)
n n−1 n 1 2 n
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Table 2
Mathematical variables used in the problem formulation.
Symbol Description

O = {O1,O2, . . . ,OK } The set of orders
K Number of orders
k Index of orders (1≤k≤K )
dk Expected delivery time of order Ok
wk Importance weight of order Ok
Φk Set of production tasks in order Ok
J = {J1, J2, . . . , Jn} Set of all production tasks
n Number of tasks
j Index of tasks (1≤ j≤n)
M = {M1,M2, . . . ,Mm} Set of machines
m Number of machines
i Index of machines (1≤ i≤m)
tij Processing time of ith operation of task Jj (on machine Mi)
π = {π1, π2, . . . , πn} A solution (sequence of n tasks) to the problem
C(πi, j) Completion time of task πj on machine Mi
T (Ok) Completion time of order Ok
v

p
v
t

Fig. 1. Basic flow to apply the machine learning approach to solve the
roduction task scheduling problem.

As a result, the encoder produces an aggregated embedding of
ll inputs as the mean of n hidden states:

h =
1
n

n∑
j=1

hj (8)

The decoder also performs n decoding steps, each making a
decision on which task should to be processed at the next step.
At each jth step, it constructs a context vector hc by concatenating
h and the hidden state hj−1 of the previous LSTM. We use a five-
layer DNN to implement the decoder. The first layer takes h as
nput and transforms it into a n1-dimensional hidden vector u1
(n1 < n):

u1 = ReLU(W1h
T
+ b1) (9)

where W1 is a n1×n weight matrix and b1 is a n1-dimensional
bias vector.
 s

4

Fig. 2. Architecture of the neural network scheduler.

The second layer takes the concatenation of u1 and context
vector hc as input and transforms it into a n2-dimensional hidden
vector u2 (n2 < n1):

u2 = ReLU(W2[u1;hc]
T
+ b2) (10)

where [_; _] denotes the horizontal concatenation of vectors, W2
is a n2×(n1+2n) weight matrix and b2 is a n2-dimensional bias
ector.
Each of the remaining layers takes the hidden state of the

revious layer and transforms it into a lower-dimensional hidden
ector using ReLU activation. Finally, the probability that each
ask xj is selected at the tth step is calculated based on the state
u of the top layer of the DNN:

pθ (πt=xj|x, π1:t−1) =
euj∑n

j′=1 e
uj′

(11)

At each step, the task that has the maximum probability is
elected into the schedule.
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.2. Reinforcement learning of the neural network

A solution to the scheduling problem can be viewed as a
equence of decisions, and the decision process can be regarded
s a Markov decision process [29]. According to the objective
unction (6), the training of the network is to minimize the loss

(θ|x) = Eπ∼pθ (_|x)f (π|x) (12)

We employ the policy gradient using REINFORCE algorithm
30] with Adam optimizer [31] to train the network. The gradients
f network parameters θ are defined based on a baseline base(x)
s:

θL(θ|x) = Eπ∼pθ (_|x)
(
(f (π|x)−base(x))∇θ log pθ (π|x)

)
(13)

A good baseline reduces gradient variance and increases learn-
ng speed [16]. Here, we use both the NEH heuristic [6] and
uliman heuristic [7] to solve each instance x, and use the better
ne as the base(x).
During the training, we approximate the gradient via Monte-

arlo sampling, where B problem instances are drawn from the
ame distribution:

θL(θ) =
1
B

B∑
i=1

(
(f (πi|xi)−base(xi))∇θ log pθ (πi|xi)

)
(14)

The pseudocode of the REINFORCE algorithm for optimizing
he network parameters according to ∇θL(θ) is presented in
lgorithm 1.

. Computational results

.1. Comparison of different baselines for the reinforcement learning
lgorithm

In the training phase, according to production tasks of the
anufacturer during the peak of COVID-19 in China, we randomly
enerate 20,000 instances. The basic features of the instance
istribution are as follows: m=5 (the number of machines in the
HENDE company), n follows a normal distribution N(124, 33), t
ij

5

Algorithm 1: The REINFORCE algorithm.
1 Randomly initialize the network parameters θ;
2 for epoch= 1 to epochmax do
3 for t = 1 to T do
4 for i = 1 to B do
5 Sample an instance xi from the problem distribution;
6 Compute the model output πi;
7 Compute the baseline base(xi);

8 g(θ)← 1
B

∑B
i=1

(
(f (πi)−base(xi))∇θ log pθ (πi|xi)

)
;

9 θ← Adam(θ, g(θ));

0 return θ.

follows a normal distribution N(2.4, 1.6) (in hours), and dk fol-
lows a uniform discrete distribution {24, 36, 48, 60, 72, 96, 120}
(in hours). To avoid training instances deviating too much from
the distribution of the problem, any instance where the sum of
all tij is larger than 1500 or less than 50 is considered as noise
nd is not included in the training set.
Our REINFORCE algorithm uses hybrid NEH and Suliman

euristics (denoted by NEH-Sul) as the baseline. For compar-
son, we also use three other baselines: the first is a greedy
euristic that sorts tasks in decreasing order of wk/(

∑m
i=1 tij),

and the second and the third are individual NEH heuristic and
individual Suliman heuristic, respectively. For each baseline, we
run 30 Monte Carlo simulations with different sequences of
training instances. The maximum number of epochs for train-
ing the network is set to 100. The neural network model is
implemented using Python 3.4, and the training heuristics are im-
plemented with Microsoft Visual C# 2015 (snapshots are shown
in Fig. 3 and codes can be download from http://compintell.
cn/en/dataAndCode.html). The experiments are conducted on a
computer with Intel Xeon 3430 CPU, 4G DDR4 Memory, and
GeForce GTX 1080Ti GPU.

Fig. 4 presents the convergence curves of the four methods
(averaged over the 30 Monte Carlo simulations) during the train-
ing process. The horizontal axis denotes the training epochs, and
the vertical axis denotes the average objective function value

http://compintell.cn/en/dataAndCode.html
http://compintell.cn/en/dataAndCode.html
http://compintell.cn/en/dataAndCode.html
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Fig. 4. Convergence curves of the four methods for training the neural network.

Fig. 5. Numbers of epochs of the four methods to reach the best value within
1% error.

of Eq. (6) obtained by the network. Among all simulations, the
best average objective function value is approximately 6.25, and
Fig. 5 presents the numbers of epochs at which the simulations
converge to the best value within 1% error. The results show that,
among 30 runs, the greedy method converges to the best value
only twice, and in most cases it converges to local optima that
are significantly worse than the best value. The individual NEH
heuristic converges to the best value in 28 of the 30 runs, and
the individual Suliman heuristic and our hybrid method converge
to the best value in all 30 runs. In average, NEH and Suliman
heuristics converge after 80∼85 epochs, while our method con-
erges after 60∼65 epochs. This is because NEH and Suliman
euristics exhibit different performance on different instances,
nd using the baseline combining them can obtain solutions that
re closer to the exact optima than either individual heuristic
nd, therefore, reduces gradient variance and increases learn-
ng speed. Moreover, as both NEH and Suliman heuristics are
fficient constructive heuristics, using the hybrid baseline only
ncurs a slight performance overhead during the training process.
he results demonstrate that, compared to the existing heuristic
aselines, our method using hybrid NEH and Suliman heuristics
s the baseline can significantly improve the training perfor-
ance. This also provides an approach to improve reinforcement

earning for neural optimization by simply combing two or more
omplementary baselines to a better baseline.

.2. Comparison of scheduling performance

Next, we test the performance of the trained neural network
cheduler (denoted by NNS) for solving the scheduling problem
6

Fig. 6. Distribution of number of tasks of the real-world instances.

by comparing with the NEH heuristic, Suliman heuristic, and
five state-of-the-art metaheuristic algorithms including a shuffled
complex evolution algorithm (SCEA) [32], an algebraic differen-
tial evolution (ADE) algorithm [33], a teaching–learning based
optimization (TLBO) algorithm [34], a biogeography-based opti-
mization (BBO) algorithm [35,36], and a discrete water wave opti-
mization (WWO) algorithm [15,37]. Before applying the network
to real-world instances, we select 50 instances with different
sizes from the training instances, use the above five metaheuris-
tics to solve each of them, and select the best solution obtained
by them as the label of the instance. The network is fine-tuned
using back-propagation on the labeled instances.

We select 146 real-world instances of the manufacturer from
Feb 8 to Feb 14, 2020, the peak of COVID-19 in China. For each
day, we need to first solve an instance with about 50∼200 tasks;
during the daytime, with the arrival of new orders, we need to
reschedule the production for 20∼40 times. Fig. 6 shows the
distribution of number of tasks of the instances. After each day,
we also select 2∼4 scheduling/rescheduling instances, employ
five metaheuristics to obtain solutions as the labels of the in-
stances, and use the labeled instances to re-train the network.
Such periodical re-training also increases the model robustness
against noise.

Figs. 7–13 present the resulting objective function values ob-
tained by the different algorithms on the instances during Feb 8
to Feb 14. For the above five stochastic metaheuristic algorithms,
we perform 50 Monte Carlo simulations on each instance, and
present the maximum, minimum, median, first quartile (Q1), and
third quartile (Q3) of the resulting objective function values in
the plots. Table 3 presents the average CPU time consumed by
the algorithms to obtain the solutions; for the five metaheuris-
tic algorithms, the stop condition is that the number of fitness
evaluations reaches 100,000.

As it can be observed from the results, the Suliman heuris-
tic typically consumes more computational time than the NEH
heuristic, because the former uses a bit more complex solu-
tion construction procedure, although both heuristics have time
complexities that are polynomial in instance size. The overall per-
formance of the two heuristics are similar: the Suliman heuristic
obtains better solutions on three instances, while NEH performs
better on the other four instances. The computational time of
our NNS model is similar to NEH (and less than Suliman): as the
NNS model iteratively process input tasks and select tasks into a
schedule, its time complexity is also polynomial in instance size;
the time consumed to process a task by NNS is similar to the
time of a construction step in NEH. Nevertheless, the solutions
produced by NNS are significantly better than those of both NEH
and Suliman heuristics, which demonstrates that NNS trained on
the large number of instances by reinforcement learning based

on the hybrid NEH and Suliman baseline can effectively learn
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Fig. 7. Comparison of the results of the neural network scheduler, constructive
heuristics, and metaheuristic algorithms on the instance of Feb 8.

Fig. 8. Comparison of the results of the neural network scheduler, constructive
heuristics, and metaheuristic algorithms on the instance of Feb 9.

the problem distribution and map new instances to high-quality
solutions, and such neural network mapping exhibits signifi-
cant performance advantages over the construction procedures
of Suliman and NEH.

The metaheuristic algorithms are more powerful in solving the
roduction task scheduling problem, but their performance ad-
antages are at expense of high computational cost. On the seven
roblem instances, their average solution times are 500∼1500 s,
ignificantly longer than the 1∼2 s of NNS. Nevertheless, the
bjective function values produced by NNS are only approxi-
ately 10%∼20% larger than the median objective function values
f the metaheuristic algorithms. In some cases, the solutions of
NS are even better than the worst solutions produced by the
etaheuristic algorithms (e.g., SCEA on the instance of Feb. 8
nd BBO on the instance of Feb. 9). In general, compared to
he state-of-the-art metaheuristics, NNS consumes about 1/1000
omputational time to achieve similar performance. This is be-
ause, at each generation of the metaheuristics, the operations for
volving the solutions have time complexity polynomial in solu-
ion length (which is equivalent to instance size); as discussed
bove, the time complexity of NNS is also polynomial in instance
ize; however, the metaheuristics use approximately a thousand
terations in average. In emergency conditions, the computational
ime of the metaheuristics is obviously unaffordable, while the
roposed NNS can produce high-quality solutions within seconds
nd, therefore, satisfy the requirements of emergency medical
ask production.
7

Fig. 9. Comparison of the results of the neural network scheduler, constructive
heuristics, and metaheuristic algorithms on the instance of Feb 10.

Fig. 10. Comparison of the results of the neural network scheduler, constructive
heuristics, and metaheuristic algorithms on the instance of Feb 11.

Fig. 11. Comparison of the results of the neural network scheduler, constructive
heuristics, and metaheuristic algorithms on the instance of Feb 12.

6. Conclusion

In this paper, we propose a DNN with reinforcement learning
for scheduling hundreds of emergency production tasks within
seconds. The neural network consists of an encoder and a de-
coder. The encoder employs an LSTM-based RNN to sequentially
parse the input production tasks, and the decoder employs a deep
neural network to learn the probability distribution over these
tasks. The network is trained by reinforcement learning using
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Fig. 12. Comparison of the results of the neural network scheduler, constructive
euristics, and metaheuristic algorithms on the instance of Feb 13.

Fig. 13. Comparison of the results of the neural network scheduler, constructive
euristics, and metaheuristic algorithms on the instance of Feb 14.

able 3
PU time (in seconds) consumed by the neural network scheduler, constructive
euristics, and metaheuristic algorithms on the test instances.
Day NEH Suliman NNS SCEA ADE TLBO BBO WWO

Feb-8 0.63 0.93 0.75 545 516 525 524 520
Feb-9 0.92 2.35 1.03 725 690 710 718 707
Feb-10 1.71 4.59 1.32 1102 1027 1060 1089 1047
Feb-11 2.13 5.26 1.57 1210 1097 1136 1165 1121
Feb-12 2.30 5.96 1.72 1503 1312 1337 1422 1359
Feb-13 0.97 2.64 1.09 940 851 890 908 883
Feb-14 1.45 3.84 1.20 1013 948 970 993 956

the negative total tardiness as the reward signal. We applied the
proposed neural network scheduler to a medical mask manufac-
turer during the peak of COVID-19 in China. The results show
that the proposed approach can achieve high-quality solutions
within very short computational time to satisfy the requirements
of emergency production.

Emergency production scheduling is an important function
hat determines the efficiency of a manufacturing system in re-
ponse to unexpected emergencies. Most manufacturers have
urchased OR tools with exact optimization algorithms, which are
uitable for only small-size instances. Many manufacturers have
lso equipped heuristic and metaheuristic scheduling algorithms.
onstructive heuristics can produce good solutions on small-size
nstances and occasionally on moderate-size instances, but there
s no guarantee on the optimality or optimality gap. In general, we
o not encourage directly using constructive heuristics to solve
eal-world emergency production scheduling instances; they can
8

be used in combined with other methods, e.g., for generating
initial solutions for metaheuristics or acting baselines for neural
optimization models. Metaheuristics are suitable for moderate-
size instances, but are not suitable for large-size instances under
emergency conditions. The proposed neural optimization method
is suitable for moderate- and large-size instances, but the main
disadvantage is that it should have been trained on a large num-
ber of well-distributed instances. If the emergency will last for
a certain period, we can first analyze the distribution of the
problem and generate sufficient instances for model training, and
use the trained network in the remaining stages. Managers of
manufacturers should define a decision-making process on select-
ing the most suitable solution methods for different instances so
as to efficiently respond to emergencies.

In our study, the baseline plays a key role in reinforcement
learning. The baseline used in this paper is based on two con-
structive heuristics, which have much room to be improved.
However, better heuristics and metaheuristics often require large
computational resource and are not efficient in training a large
number of test instances. Currently, we are incorporating other
neural network schedulers to improve the baseline. Ongoing work
also includes preprocessing training instances by clustering and
re-sampling to improving learning performance [38] and using
metaheuristic algorithms to optimize the parameters of the deep
neural network [39]. Moreover, we believe that the proposed
approach can be adapted or extended to many other emergency
scheduling problems, e.g., disaster relief task scheduling [40] and
online unmanned aerial vehicle scheduling [41,42], in which short
solution time is critical to the mission success.
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