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Experiments of Ensemble Adversarial Learning on
Benchmark Problems

TABLE I
SUMMARY OF THE BENCHMARK IMBALANCED DATASETS USED.

Dataset Number of
samples

Number of
attributes

Imbalance
ratio

yeast-0-5-6-7-9 vs 4 498 8 22.71
yeast2vs8 474 8 38.50
yeast6 1474 8 57.96
abalone19 4174 8 129.44
vowel0 936 13 23.63
vehicle0 666 18 34.05
segment0 2008 19 68.24
autos 153 25 50.00
dermatology-6 344 34 56.33
kddcup-buffer overflow vs back 2212 41 244.78
kddcup-rootkit-imap vs back 2205 41 1101.5
SRBCT 75 2308 24.00
LUNG2 187 3312 45.75
CAR 165 9182 81.50
BULL 92 17404 45.00

A. Experiments on Benchmark Problems

We first test the proposed GAN ensemble method on 15
datasets, including 11 KEEL data sets from [1] and 4 DNA
microarray data sets from [2], [3], which are summarized
in Table I. Since the proposed GAN ensemble classifier
targets highly imbalanced problems, we remove some minority
samples from the original data sets to increase the imbalance
ratio.

The following nine popular classification techniques are
used for comparison:

• The synthetic minority oversampling technique (SMOTE)
[4], one of the most well-known oversampling techniques
for imbalanced classification.

• The adaptive synthetic (ADASYN) sampling approach
that improves learning from imbalanced data sets by
generating more synthetic data for more difficult minority
class examples [5].

• The granular support vector machines repetitive unders-
ampling technique (GSVM-RU) [6].

• EasyEnsemble [7], an ensemble-based undersampling
that samples several subsets from the majority class and
trains a learner on each of them.

• IIvotes [8], a rule-based ensemble with selective data pre-
processing.

• EUSBoost [9], an ensemble construction technique that
improves RUSBoost using evolutionary undersampling.

• An ensemble of cost-sensitive decision trees (CSTrees)
which are trained on random feature subspaces [10].

• The iterative instance adjustment for imbalanced dom-
ains (IPADE-ID) [11], an evolutionary technique using
iterative instance generation and learning.

• BalEnsemble, an ensemble method that converts an im-
balanced data set into multiple balanced ones and builds
multiple classifiers on them [12].

For each of the ensemble-based technique, we fine tune
the number of ensemble members between [5,30] on each
benchmark problem. For our evolutionary algorithm for GAN
ensemble fusion, we set cr = 0.95, mr = 0.015, ηmin = 0.35,
ηmax = 0.75, ĝ = 12, NP = 30, and maximum number of
generations of is set to 200. The other control parameters of the
comparative techniques are set as suggested in the literature,
and the test uses a five-fold cross-validation strategy. The data
set is stored in an IBM Storwize V7000 storage server (with
24×600G 15K SAS disk, a 300G STEC SSD, and 64GB
cache), and the computational environment is a LenovoSystem
x3850 X6 server (with 4×Intel Xeon 4830 CPU, 32GB DDR4
memory, and Windows Server NT 6.2 operating system).

The experimental results are evaluated based on the sensiti-
vity measure that denotes what percentage of minority samples
are identified as such and the specificity measure that denotes
what percentage of majority samples are identified as such:

sensitivity =
TP

TP + FN
(1)

specificity =
TN

FP + TN
(2)

where TP, FP, TN and FN refer to true positives, false
positives, true negatives and false negatives, respectively.

We also use a combined measure, the Area Under the
receiver operating characteristic Curve (AUC) [13], which
evidences that increasing the number of TP without also
increasing the number of FP and thus is widely used in
imbalanced problems:

AUC =
sensitivity + specificity

2
(3)

Tables II, III, and IV present the sensitivity, specificity, and
AUC results of our GANEnsemble method and the other nine
comparative methods on the benchmark problems, respecti-
vely. On each benchmark problem, the best result(s) among
the ten methods is shown in boldface.

As seen in Table II, the proposed GANEnsemble method
achieves the best sensitivity values on 11 benchmark pro-
blems; for the remaining 4 problems, the sensitivity values of
GANEnsemble are the second best on yeast-0-5-6-7-9 vs 4,
yeast6 (lower than the BalEnsemble method) and dermatology-
6 (lower than ADASYN), and is worse than four other methods
on vehicle0. Except dermatology-6, the other three datasets
where GANEnsemble does not perform the best typically
have relatively low dimensions and/or imbalance ratios. In
general, among the ten comparative methods, GANEnsemble
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and BalEnsemble show the best performance in identifying
minority samples, while GANEnsemble has a more significant
performance advantage on datasets with high dimension and/or
a high imbalance ratio.

In Table III we see that our GANEnsemble method shows
more promising performance in terms of low misclassification
rate: Its specificity values are the best on 12 benchmark pro-
blems, the second best on 2 problems (SRBCT and LUNG2),
and is worse than three other problems on the remaining
problem (vowel0). Note that vowel0 is also a dataset with
a relatively low dimension and imbalance ratio. For SRBCT
and LUNG2, we only use 3 and 4 minority samples which are
all correctly identified by GANEnsemble, and the numbers of
majority samples misclassified as minority are only 1 and 2,
respectively, which can be verified without much effort.

Regarding the comprehensive AUC results shown in Table
IV, the performance of GANEnsemble is the best on nine
benchmark problems, the second best on 4 problems inclu-
ding yeast-0-5-6-7-9 vs 4, yeast6 (lower than BalEnsemble),
vowel0 (lower than SMOTE) and dermatology-6 (lower than
ADASYN), and is worse than three other methods on the
SRBCT problem.

In summary, the overall performance of the proposed GA-
NEnsemble method is the best among the ten comparative
methods, and the performance advantage is more obvious on
higher dimensional and more imbalanced problems. Therefore,
it is expected that GANEnsemble can be one of the most
effective methods for extremely imbalanced problems such as
terrorist identification.
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TABLE II
THE SENSITIVITY RESULTS OF THE COMPARATIVE CLASSIFIERS ON THE BENCHMARK IMBALANCED DATASETS.

Dataset SMOTE ADASYN GSVM-RU EasyEnsemble IIvotes EUSBoost CSTrees IPADE-ID BalEnsemble GANEnsemble

yeast-0-5-6-7-9 vs 4 0.4286 0.5714 0.7143 0.5714 0.6190 0.6667 0.6190 0.7143 0.7619 0.7143
yeast2vs8 0.6667 0.5000 0.6667 0.5833 0.5833 0.6667 0.7500 0.5000 0.7500 0.7500
yeast6 0.6400 0.6000 0.6800 0.6400 0.6800 0.8000 0.7200 0.6800 0.8400 0.8000
abalone19 0.3438 0.4375 0.3750 0.6250 0.5625 0.5938 0.5938 0.4063 0.6250 0.6875
vowel0 0.9737 0.9474 0.9737 0.8947 0.9211 0.9474 0.9211 0.9474 0.9737 0.9737
vehicle0 0.7895 0.7895 0.7895 0.8421 0.8947 0.8421 0.7895 0.7895 0.8421 0.7895
segment0 0.6897 0.6897 0.6207 0.6552 0.6552 0.6897 0.7241 0.6552 0.7931 0.8621
autos 1.0000 1.0000 0.6667 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
dermatology-6 0.8333 1.0000 0.6667 0.8333 0.8333 0.8333 0.8333 0.8333 0.8333 0.8333
kddcup-buffer overflow vs back 0.6667 0.6667 0.5556 0.7778 0.6667 0.7778 0.7778 0.6667 0.7778 0.7778
kddcup-rootkit-imap vs back 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
SRBCT 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
LUNG2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
CAR 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
BULL 0.5000 0.5000 0.5000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

TABLE III
THE SPECIFICITY RESULTS OF THE COMPARATIVE CLASSIFIERS ON THE BENCHMARK IMBALANCED DATASETS.

Dataset SMOTE ADASYN GSVM-RU EasyEnsemble IIvotes EUSBoost CSTrees IPADE-ID BalEnsemble GANEnsemble

yeast-0-5-6-7-9 vs 4 0.8910 0.8973 0.8700 0.9015 0.9078 0.8952 0.9057 0.8994 0.8952 0.9245
yeast2vs8 0.9004 0.8961 0.8810 0.9069 0.9091 0.9004 0.9134 0.8918 0.9091 0.9372
yeast6 0.8951 0.9041 0.9013 0.9041 0.9082 0.9048 0.9103 0.9137 0.9096 0.9406
abalone19 0.7154 0.6540 0.6922 0.7653 0.7593 0.7429 0.7675 0.7429 0.7525 0.9099
vowel0 0.9955 0.9944 0.9922 0.9911 0.9889 0.9900 0.9933 0.9967 0.9911 0.9933
vehicle0 0.9567 0.8794 0.8733 0.8903 0.8964 0.8887 0.8995 0.8949 0.9073 0.9753
segment0 0.8378 0.8585 0.8353 0.8999 0.9096 0.8964 0.9075 0.8898 0.8449 0.9520
autos 0.5533 0.6600 0.6133 0.6933 0.6733 0.6200 0.7400 0.6000 0.7600 0.9400
dermatology-6 0.8550 0.8166 0.8491 0.8787 0.8580 0.8314 0.8757 0.8935 0.9142 0.9645
kddcup-buffer overflow vs back 0.7635 0.8021 0.7581 0.7844 0.8112 0.7726 0.8012 0.7935 0.7190 0.9142
kddcup-rootkit-imap vs back 0.7326 0.7612 0.7422 0.7649 0.7826 0.7594 0.7966 0.8216 0.7726 0.9383
SRBCT 1.0000 0.9583 0.9444 0.9722 1.0000 0.9583 1.0000 0.9444 0.9722 0.9861
LUNG2 0.9727 0.9672 0.9290 0.9781 0.9836 0.9891 0.9891 0.9945 0.9727 0.9891
CAR 0.9080 0.9202 0.7791 0.9264 0.9387 0.9509 0.9387 0.9448 0.9080 0.9509
BULL 0.9000 0.9111 0.7889 0.7778 0.8222 0.8333 0.8000 0.8556 0.8222 0.9444

TABLE IV
THE AUC RESULTS OF THE COMPARATIVE CLASSIFIERS ON THE BENCHMARK IMBALANCED DATASETS.

Dataset SMOTE ADASYN GSVM-RU EasyEnsemble IIvotes EUSBoost CSTrees IPADE-ID BalEnsemble GANEnsemble

yeast-0-5-6-7-9 vs 4 0.6598 0.7344 0.7922 0.7364 0.7634 0.7809 0.7624 0.8068 0.8285 0.8194
yeast2vs8 0.7835 0.6981 0.7738 0.7451 0.7462 0.7835 0.8317 0.6959 0.8295 0.8436
yeast6 0.7676 0.7520 0.7907 0.7720 0.7941 0.8524 0.8151 0.7969 0.8748 0.8703
abalone19 0.5296 0.5458 0.5336 0.6952 0.6609 0.6683 0.6806 0.5746 0.6888 0.7987
vowel0 0.9846 0.9709 0.9829 0.9429 0.9550 0.9687 0.9572 0.9720 0.9824 0.9835
vehicle0 0.8731 0.8345 0.8314 0.8662 0.8956 0.8654 0.8445 0.8422 0.8747 0.8824
segment0 0.7637 0.7741 0.7280 0.7776 0.7824 0.7930 0.8158 0.7725 0.8190 0.9070
autos 0.7767 0.8300 0.6400 0.8467 0.8367 0.8100 0.8700 0.8000 0.8800 0.9700
dermatology-6 0.8442 0.9083 0.7579 0.8560 0.8457 0.8323 0.8545 0.8634 0.8738 0.8989
kddcup-buffer overflow vs back 0.7151 0.7344 0.6568 0.7811 0.7389 0.7752 0.7895 0.7301 0.7484 0.8460
kddcup-rootkit-imap vs back 0.8663 0.8806 0.8711 0.8824 0.8913 0.8797 0.8983 0.9108 0.8863 0.9691
SRBCT 1.0000 0.9792 0.9722 0.9861 1.0000 0.9792 1.0000 0.9722 0.9861 0.9931
LUNG2 0.9863 0.9836 0.9645 0.9891 0.9918 0.9945 0.9945 0.9973 0.9863 0.9945
CAR 0.9540 0.9601 0.8896 0.9632 0.9693 0.9755 0.9693 0.9724 0.9540 0.9755
BULL 0.7000 0.7056 0.6444 0.8889 0.9111 0.9167 0.9000 0.9278 0.9111 0.9722
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